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Verification for concurrent systems

Hard problem due to state explosion

Compositional verification techniques limit state explosion. One
example of compositional rules is

B1 < Φ1 >, B2 < Φ2 >, C (Φ1,Φ2,Φ)

B1‖B2 < Φ >

One approach is assume-garantie but many issues make it difficult
such as finding decomposition into sub-systems, finding adequate
assumptions... [Cobleigh et al., 2008]
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Verification for concurrent systems

Our approach for compositional verification of invariants is based on the
following rule:

B1 < Φ1 >,B2 < Φ2 >, Ψ ∈ II (B1 ‖ B2,Φ1,Φ2), Φ1 ∧ Φ2 ∧Ψ ⇒ Φ

B1 ‖ B2 < Φ >

ψ

φ2

φ1
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An example : Temperature Control System

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0
rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

Rod1 = (L, P, T , X , {gτ}τ∈T , {fτ}τ∈T ) Set of interactions A = {a1, a2, a3, a4, a5}
L = {l1, l2} a1 = {cool , cool1}, Ga1 = true
P = {rest1, cool1, tick1} a2 = {cool , cool2}, Ga2 = true
X = {t1} a3 = {heat, rest1}, Ga3 = true
τ1 = (l1, tick1, l1), gτ1 = true, fτ1 = (t1 := t1 + 1) a4 = {heat, rest2}, Ga4 = true
τ2 = (l2, tick1, l2), gτ1 = true a5 = {tick, tick1, tick2}, Ga5 = true
τ3 = (l1, cool1, l2), gτ1 = (t1 ≥ 3600)
τ4 = (l2, rest1, l1), gτ1 = true, fτ1 = (t1 := 0)
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Composition

b

b

b

x, y

l1, l3

l2, l4

l1, l4 l2, l3

ac d

ac

d

d

L = {(l1, l3), (l2, l4), (l1, l4), (l2, l3)}
P = {ac, b, d}
X = {x, y}
τ1 = {(l1, l3), ac, (l2, l4)}, gτ1

= true

τ3 = {(l2, l4), d, (l2, l3)}, gτ3
= true

τ4 = {(l1, l4), d, (l1, l3)}, gτ4
= true

τ5 = {(l2, l3), b, (l1, l3)}, gτ5
= true

τ2 = {(l2, l4), b, (l1, l4)}, gτ2
= true

γ = {a1, a2, a3}
a1 = {a, c}, ga1

= true
a2 = {b}, ga2

= true
a3 = {d}, ga3

= true

y

l3

l4

c d

c d

L = {l3, l4}

τ3 = {l3, c, l4}, gτ3
= true

τ4 = {l4, b, l3}, gτ4
= true

P = {c, d}

l2

x

a b

ab

l1

P = {a, b}
L = {l1, l2}

X = {x}

τ2 = {l2, b, l1}, gτ2
= true

τ1 = {l1, a, l2}, gτ1
= true

X = {y}
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Definitions

Given a system B = (L,P,T ,X , {gτ}τ∈T , {fτ}τ∈T )

Post predicate
p, g = (x ≥ 1), f = (x := x + 1)

l l′

ϕ(x) = (x ≥ 0) postτ (ϕ)(x) =?

postτ (ϕ)(x) = ∃x ′.(x ′ ≥ 0) ∧ (x ′ ≥ 1) ∧ (x = x ′ + 1) = x ≥ 2

Inductive Invariant and Invariant

a predicate φ is:

an inductive invariant iff (Init ∧ post(φ)) ⇒ φ

an invariant if there exists an inductive invariant φ0 such that φ0 ⇒ φ
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The Method: The main Idea

Compositional verification rule

B1 < Φ1 >,B2 < Φ2 >,Ψ ∈ II (B1 ‖ B2,Φ1,Φ2) Φ1 ∧ Φ2 ∧Ψ ⇒ Φ

B1 ‖ B2 < Φ >

Φ is the component invariant of Bi

Ψ is an interaction invariant of γ(B1, . . . ,Bn) computed from Φi and
γ(B1, . . . ,Bn)
n∧

i=1
Φi ∧Ψ is an over-approximation of reachable states of system
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Automatic Generation Of Invariants

We provide heuristics for computing two types of invariants:

Component Invariants

Invariants for atomic components are generated by simple forward analysis
of their behavior.

over-approximations of the set of their reachable states.

Interaction Invariants

Invariants that characterize constraints on the global state space induced
by synchronizations between components.

Generalizations of the notions of trap in Petri nets.
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Computing component invariants

Definition (Inductive invariants)

Given a system 〈B, Init〉, the following iteration defines a sequences of
increasingly stronger inductive invariants

φ0 = true φi+1 = Init ∨ post(φi )

Efficient computation of component invariants

Precise computation of post requires quantifier elimination

An alternative is to compute over-approximations of post based on
syntactic analysis of the predicatesml ′ ml-gτ (Y )

Z = fτ (U)

For a predicate ϕ find ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such that Y2 ∩ Z = ∅
posta

τ (ϕ) = ϕ2(Y2)∧
{

gτ (Y ) if Z ∩ Y = ∅
true otherwise

}
∧

{
Z = fτ (U) if Z ∩ U = ∅

true otherwise

}
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Component Invariants: An example

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0
rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

Example

For the Temperature Control System, the predicates
Φ1 = (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600),
Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600) and
Φ3 = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000) are respectively
component invariants of the atomic components Rod1, Rod2 and Controller.
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Computing interaction invariants of finite systems

Trap: a set of places, if they have initially a token, thay will always have a token

tick

l6

heat

tick

l5

cool

tick1

tick1

cool1 rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

Rod1 Controller Rod2

l1 l5 l3

l2 l6 l4

cool − cool1 cool − cool2

heat − rest1 heat − rest2

The set of implications
l1 ⇒ l2 ∨ l6 l2 ⇒ l1 ∨ l5
l3 ⇒ l4 ∨ l6 l4 ⇒ l3 ∨ l5
l5 ⇒ (l2 ∨ l6) ∧ (l4 ∨ l6) l6 ⇒ (l1 ∨ l5) ∧ (l3 ∨ l5)

Ψ1 = {l1, l3, l6} and Ψ2 = {l2, l4, l5} are solutions (traps)

Interaction invariant is II = (l1 ∨ l3 ∨ l6) ∧ (l1 ∨ l3 ∨ l6)

Thanh-Hung Nguyen (Verimag) Monday, June 9, 2008 13 / 26



Basic semantic model Method Application Implementation and Experimentation Conclusions

Computing Interaction Invariants of infinite systems

Main Idea

Given a system S = 〈γ(B1, . . . ,Bn), Init〉 and a set of invariants Φ1 . . .Φn

corresponding to its components.

1 First, for each component Bi and its associated invariant Φi , we
define a finite state abstraction αi and compute an abstract transition
system Bαi

i .

2 Then, we compute interaction invariants for S by analyzing, without
constructing explicitely the state space, the parallel composition
Bα = γ(Bα1

1 , . . . ,Bαn
n ).
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Computing interaction invariants of infinite systems

Component invariants φi for i = 1 . . . n
Input: B = γ(B1, . . . , Bn) and

Compute Ba = γ(Ba
1 , . . . , Ba

n )

Compute set of traps {Ψ1, . . . , Ψm}

Compute abstraction Ba
i for each Bi

Compute interaction invariant IIk for Ψk

IIk =
W

φi

Output
V

IIk
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Abstraction

Abstract states constructed from Component Invariants of the Controller
φController = φ5 ∨ φ6
φ5 = at l5 ∧ (θ = 100∨ 101 ≤ θ ≤ 1000) = (at l5 ∧ θ = 100)| {z }

φ51

∨ (at l5 ∧ 101 ≤ θ ≤ 1000)| {z }
φ52

φ6 = at l6 ∧ (θ = 1000∨ 100 ≤ θ ≤ 998) = (at l6 ∧ θ = 1000)| {z }
φ61

∨ (at l6 ∧ 100 ≤ θ ≤ 998)| {z }
φ62

heatcool

tick

tick

tick

cool

tick

tick

heat

φ51 φ52

φ62 φ61

Controllera

tick

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

tick

cool heat

Controller

l6
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Definitions

Predicate en of a port

en is a set of states from which this port is enabled
en(tick) = (at l5 ∧ θ < 1000) ∨ (at l6 ∧ θ > 100)

Predicate DISa of an interaction a = {a1, . . . , an}
DISa is a set of states from which this interaction is disabled

DISa = ¬
n∧

i=1

en(pi )

tick

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100

θ := θ − 2

θ = 1000

tick

cool heat

Controller

l6

Predicate DIS of a system 〈γ(B1, . . . , Bn)〉
DIS is a set of states from which all the interactions are disabled
DIS = ¬

∧
a∈γ

DISa
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Temperature Control Sytem: DIS

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0
rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

DIS state of Temperature Control System

DIS = (¬(at l5 ∧ θ < 1000))
∧

(¬(at l6 ∧ θ > 100))∧
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l1 ∧ t1 ≥ 3600))∧
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l3 ∧ t2 ≥ 3600))∧
(¬(at l6 ∧ θ = 100) ∨ ¬at l2)∧
(¬(at l6 ∧ θ = 100) ∨ ¬at l4)
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Algorithm for detecting deadlocks

Input: S = 〈γ(B1, . . . , Bn), Init〉

Find invariant Φ′ = false6= false

6= false

strengthen

Output : Deadlock-freedom

Compute DIS for γ(B1, . . . , Bn)

Fin invariant Φ of S

Φ ∧ DIS
Φ := Φ ∧ Φ′

give up

Output: Potential deadlocks
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Temperature Control Sytem

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0
rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

Step Deadlocks
CI ∧ DIS 1. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l6 ∧ θ = 100)

2. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
3. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
4. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
5. (at l2 ∧ t1 ≥ 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

CI ∧ II ∧ DIS 6. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
7. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
8. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
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D-Finder

Local 
Deadlock−Free
verification

DIS
generation

Deadlock
confirmation

BIP
simulation

generation

Abstraction and
II generation

BIP model

Deadlock−free Deadlocks

CI

false

Yices

Omega

Satisfiability

CI

II

DIS

6= false-strengthen 6= false-give up

II ∧ CI ∧ DIS

Thanh-Hung Nguyen (Verimag) Monday, June 9, 2008 22 / 26



Basic semantic model Method Application Implementation and Experimentation Conclusions

Case Studies

example n q xb xi D Dc Dci t
Waterflow Control 4 8 2 0 11 11 0 0m1s
R-W(50 readers) 52 106 0 1 ∼ 1015 ∼ 1015 0 1m15s
R-W(100 readers) 102 206 0 1 ∼ 1030 ∼ 1030 0 15m28s
R-W(130 readers) 132 266 0 1 ∼ 1039 ∼ 1039 0 29m13s
T. Control(2 Rods) 3 6 0 3 8 5 3 0m3s
T. Control(4 Rods) 5 10 0 5 32 17 15 1m5s
UTSv1 (4 Cars, 9 UCal) 14 45 4 30 82961 41488 0 1m42s
UTSv3 (8 Cars, 16 UCal) 25 91 8 58 0 22m2s

n number of BIP components in example
q total number of control locations
xb total number of boolean variables
xi total number of integer variables
D estimated number of potential deadlocks configurations in DIS
Dc number of potential deadlock configurations remaining in DIS ∧ CI
Dc i number of potential deadlock configurations remaining in DIS ∧ CI ∧ II
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Conclusions and future work

Conclusions
Innovates: using interaction invariant to characterize contexts of individual components.

Efficiently combines two types of invariants (invariants of atomic components and
interaction invariants).

Using only lightweight analysis techniques

No restrictions on the type of data as long as we stay within theories for which there exist
efficient decision procedures.

Can be adapted to interactions with data transfer

Current and future work
Prove safety properties other than deadlock-freedom.

Generate inductive invariant to eliminate potential deadlocks [Bradley and Manna, 2007]

Adapt to interactions with data transfer
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