

Compositional Verification for Component-based Systems and Application

Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, Joseph Sifakis

Verimag Laboratory

UJF/CNRS

Monday, June 9, 2008

Verification for concurrent systems

- Hard problem due to state explosion
- Compositional verification techniques limit state explosion. One example of compositional rules is

$$\frac{B_1 < \Phi_1 >, \ B_2 < \Phi_2 >, \ C(\Phi_1, \Phi_2, \Phi)}{B_1 \| B_2 < \Phi >}$$

• One approach is *assume-garantie* but many issues make it difficult such as finding decomposition into sub-systems, finding adequate assumptions... [Cobleigh et al., 2008]

Verification for concurrent systems

Our approach for compositional verification of invariants is based on the following rule:

 $B_1 < \Phi_1 >, B_2 < \Phi_2 >, \ \Psi \in II(B_1 \parallel B_2, \Phi_1, \Phi_2), \ \Phi_1 \land \Phi_2 \land \Psi \Rightarrow \Phi$ $B_1 \parallel B_2 < \Phi >$ ϕ_2 reachable states

Basic semantic model	Method	Application	Implementation and Experimentation	Conclusions
Outline				

- Basic semantic model
- 2 Compositional verification method
- 3 Application for checking deadlock-freedom
- Implementation and Experimentation
- 5 Conclusions and future work

An example : Temperature Control System

$$\begin{aligned} &Rod_{1} = (L, P, T, X, \{g_{\tau}\}_{\tau \in T}, \{f_{\tau}\}_{\tau \in T}) \\ &L = \{l_{1}, l_{2}\} \\ &P = \{rest_{1}, cool_{1}, tick_{1}\} \\ &X = \{t_{1}\} \\ &\tau_{1} = (l_{1}, tick_{1}, l_{1}), g_{\tau_{1}} = true, f_{\tau_{1}} = (t_{1} := t_{1} + 1) \\ &\tau_{2} = (l_{2}, tick_{1}, l_{2}), g_{\tau_{1}} = true \\ &\tau_{3} = (l_{1}, cool_{1}, l_{2}), g_{\tau_{1}} = true, f_{\tau_{1}} = (t_{1} := 0) \end{aligned}$$

Thanh-Hung Nguyen (Verimag)

Set of interactions
$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

 $a_1 = \{cool, cool_1\}, G_{a_1} = true$
 $a_2 = \{cool, cool_2\}, G_{a_2} = true$
 $a_3 = \{heat, rest_1\}, G_{a_3} = true$
 $a_4 = \{heat, rest_2\}, G_{a_4} = true$
 $a_5 = \{tick, tick_1, tick_2\}, G_{a_5} = true$

Composition

Basic semantic model	Method	Application	Implementation and Experimentation	Conclusions	
Outline					

- Basic semantic model
- 2 Compositional verification method
- 3 Application for checking deadlock-freedom
- Implementation and Experimentation
- 5 Conclusions and future work

Given a system
$$B = (L, P, T, X, \{g_{\tau}\}_{\tau \in T}, \{f_{\tau}\}_{\tau \in T})$$

Post predicate

$$\begin{array}{c} \overbrace{l} & p, g = (x \geq 1), f = (x := x + 1) \\ \varphi(x) = (x \geq 0) & post_{\tau}(\varphi)(x) = \end{array}$$

$$\textit{post}_{\tau}(arphi)(x) = \exists x'.(x' \geq 0) \land (x' \geq 1) \land (x = x' + 1) = x \geq 2$$

Inductive Invariant and Invariant

- a predicate ϕ is:
 - an inductive invariant iff $(Init \land post(\phi)) \Rightarrow \phi$
 - an invariant if there exists an inductive invariant ϕ_0 such that $\phi_0 \Rightarrow \phi$

The Method: The main Idea

Compositional verification rule

$$\frac{B_1 < \Phi_1 >, B_2 < \Phi_2 >, \Psi \in II(B_1 \parallel B_2, \Phi_1, \Phi_2) \Phi_1 \land \Phi_2 \land \Psi \Rightarrow \Phi}{B_1 \parallel B_2 < \Phi >}$$

- Φ is the component invariant of B_i
- Ψ is an interaction invariant of $\gamma(B_1, \ldots, B_n)$ computed from Φ_i and $\gamma(B_1, \ldots, B_n)$
- $\bigwedge_{i=1}^{''} \Phi_i \wedge \Psi$ is an over-approximation of reachable states of system

Automatic Generation Of Invariants

We provide heuristics for computing two types of invariants:

Component Invariants

Invariants for atomic components are generated by simple forward analysis of their behavior.

• over-approximations of the set of their reachable states.

Interaction Invariants

Invariants that characterize constraints on the global state space induced by synchronizations between components.

• Generalizations of the notions of trap in Petri nets.

Automatic Generation Of Invariants

We provide heuristics for computing two types of invariants:

Component Invariants

Invariants for atomic components are generated by simple forward analysis of their behavior.

• over-approximations of the set of their reachable states.

Interaction Invariants

Invariants that characterize constraints on the global state space induced by synchronizations between components.

• Generalizations of the notions of trap in Petri nets.

Automatic Generation Of Invariants

We provide heuristics for computing two types of invariants:

Component Invariants

Invariants for atomic components are generated by simple forward analysis of their behavior.

• over-approximations of the set of their reachable states.

Interaction Invariants

Invariants that characterize constraints on the global state space induced by synchronizations between components.

• Generalizations of the notions of trap in Petri nets.

Computing component invariants

Definition (Inductive invariants)

Given a system $\langle B, Init \rangle$, the following iteration defines a sequences of increasingly stronger inductive invariants

 $\phi_0 = true \ \phi_{i+1} = Init \lor post(\phi_i)$

Efficient computation of component invariants

- Precise computation of post requires quantifier elimination
- An alternative is to compute over-approximations of post based on syntactic analysis of the predicates

$$\underbrace{f'}_{Z = f_{\tau}(U)} \underbrace{g_{\tau}(Y)}_{Z = f_{\tau}(U)} \underbrace{f_{\tau}(U)}_{Z = f_{\tau}(U)}$$

For a predicate φ find $\varphi = \varphi_1(Y_1) \land \varphi_2(Y_2)$ such that $Y_2 \cap Z = \emptyset$ $post_{\tau}^a(\varphi) = \varphi_2(Y_2) \land \begin{cases} g_{\tau}(Y) & \text{if } Z \cap Y = \emptyset \\ true & \text{otherwise} \end{cases} \land \begin{cases} Z = f_{\tau}(U) & \text{if } Z \cap U = \emptyset \\ true & \text{otherwise} \end{cases} \end{cases}$

Component Invariants: An example

Example

For the Temperature Control System, the predicates $\Phi_1 = (at_l_1 \land t_1 \ge 0) \lor (at_l_2 \land t_1 \ge 3600),$ $\Phi_2 = (at_l_3 \land t_2 \ge 0) \lor (at_l_4 \land t_2 \ge 3600) \text{ and}$ $\Phi_3 = (at_l_5 \land 100 \le \theta \le 1000) \lor (at_l_6 \land 100 \le \theta \le 1000) \text{ are respectively}$ component invariants of the atomic components Rod1, Rod2 and Controller. \Box

Computing interaction invariants of finite systems

Trap: a set of places, if they have initially a token, thay will always have a token

The set of implications

 $\begin{array}{ll} l_1 \Rightarrow l_2 \lor l_6 & l_2 \Rightarrow l_1 \lor l_5 \\ l_3 \Rightarrow l_4 \lor l_6 & l_4 \Rightarrow l_3 \lor l_5 \\ l_5 \Rightarrow (l_2 \lor l_6) \land (l_4 \lor l_6) & l_6 \Rightarrow (l_1 \lor l_5) \land (l_3 \lor l_5) \\ \Psi_1 = \{l_1, l_3, l_6\} \text{ and } \Psi_2 = \{l_2, l_4, l_5\} \text{ are solutions (traps)} \\ \text{Interaction invariant is } II = (l_1 \lor l_3 \lor l_6) \land (l_1 \lor l_3 \lor l_6) \\ \end{array}$

Computing Interaction Invariants of infinite systems

Main Idea

Given a system $S = \langle \gamma(B_1, \ldots, B_n), Init \rangle$ and a set of invariants $\Phi_1 \ldots \Phi_n$ corresponding to its components.

- First, for each component B_i and its associated invariant Φ_i, we define a finite state abstraction α_i and compute an abstract transition system B_i^{α_i}.
- **2** Then, we compute interaction invariants for S by analyzing, without constructing explicitly the state space, the parallel composition $B^{\alpha} = \gamma(B_1^{\alpha_1}, \dots, B_n^{\alpha_n}).$

Computing interaction invariants of infinite systems

Abstract states constructed from Component Invariants of the Controller $\phi_{Controller} = \phi_5 \lor \phi_6$ $\phi_5 = at_l_5 \land (\theta = 100 \lor 101 \le \theta \le 1000) = \underbrace{(at_l_5 \land \theta = 100)}_{\phi_{51}} \lor \underbrace{(at_l_5 \land 101 \le \theta \le 1000)}_{\phi_{52}}$ $\phi_6 = at_l_6 \land (\theta = 1000 \lor 100 \le \theta \le 998) = \underbrace{(at_l_6 \land \theta = 1000)}_{\phi_{61}} \lor \underbrace{(at_l_6 \land 100 \le \theta \le 998)}_{\phi_{62}}$

Basic semantic model	Method	Application	Implementation and Experimentation	Conclusions	
Outline					

- Basic semantic model
- 2 Compositional verification method
- 3 Application for checking deadlock-freedom
- Implementation and Experimentation
- 5 Conclusions and future work

Definitions

Predicate *DIS* of a system $\langle \gamma(B_1, \ldots, B_n) \rangle$

DIS is a set of states from which all the interactions are disabled $DIS = \neg \land DIS_a$ $a \in \gamma$

Temperature Control Sytem: DIS

DIS state of Temperature Control System

Algorithm for detecting deadlocks

Temperature Control Sytem

Step	Deadlocks
$CI \wedge DIS$	1. $(at_l_1 \land 0 \le t_1 < 3600) \land (at_l_3 \land 0 \le t_2 < 3600) \land (at_l_6 \land \theta = 100)$
	2. $(at_1 \land 0 \le t_1 < 3600) \land (at_4 \land t_2 \ge 3600) \land (at_5 \land \theta = 1000)$
	3. $(at_{-}l_1 \land 0 \le t_1 < 3600) \land (at_{-}l_3 \land 0 \le t_2 < 3600) \land (at_{-}l_5 \land \theta = 1000)$
	4. $(at_{-}l_{2} \land t_{1} \ge 3600) \land (at_{-}l_{3} \land 0 \le t_{2} < 3600) \land (at_{-}l_{5} \land \theta = 1000)$
	5. $(at_l_2 \land t_1 \ge 3600) \land (at_l_4 \land t_2 \ge 3600) \land (at_l_5 \land \theta = 1000)$
$CI \wedge II \wedge DIS$	6. $(at_{-}l_{1} \land 1 \le t_{1} < 3600) \land (at_{-}l_{3} \land 1 \le t_{2} < 3600) \land (at_{-}l_{5} \land \theta = 1000)$
	7. $(at_l_1 \land 1 \le t_1 < 3600) \land (at_l_4 \land t_2 \ge 3600) \land (at_l_5 \land \theta = 1000)$
	8. $(at_{-l_2} \land t_1 \ge 3600) \land (at_{-l_3} \land 1 \le t_2 < 3600) \land (at_{-l_5} \land \theta = 1000)$

Thanh-Hung Nguyen (Verimag)

Basic semantic model	Method	Application	Implementation and Experimentation	Conclusions	
D-Finder					

Case Studies

example	n	q	x _b	Xi	D	D _c	D _{ci}	t
Waterflow Control	4	8	2	0	11	11	0	0m1s
R-W(50 readers)	52	106	0	1	$\sim 10^{15}$	$\sim 10^{15}$	0	1m15s
R-W(100 readers)	102	206	0	1	$\sim 10^{30}$	$\sim 10^{30}$	0	15m28s
R-W(130 readers)	132	266	0	1	$\sim 10^{39}$	$\sim 10^{39}$	0	29m13s
T. Control(2 Rods)	3	6	0	3	8	5	3	0m3s
T. Control(4 Rods)	5	10	0	5	32	17	15	1m5s
UTSv1 (4 Cars, 9 UCal)	14	45	4	30	82961	41488	0	1m42s
UTSv3 (8 Cars, 16 UCal)	25	91	8	58			0	22m2s
					-			

- *n* number of BIP components in example
- q total number of control locations
- x_b total number of boolean variables
- x_i total number of integer variables
- D estimated number of potential deadlocks configurations in DIS
- D_c number of potential deadlock configurations remaining in $DIS \wedge CI$
- $D_c i$ number of potential deadlock configurations remaining in $DIS \wedge CI \wedge II$

Basic semantic model	Method	Application	Implementation and Experimentation	Conclusions	
Outline					

- Basic semantic model
- 2 Compositional verification method
- 3 Application for checking deadlock-freedom
- Implementation and Experimentation
- 5 Conclusions and future work

Conclusions and future work

Conclusions

- Innovates: using interaction invariant to characterize contexts of individual components.
- Efficiently combines two types of invariants (invariants of atomic components and interaction invariants).
- Using only lightweight analysis techniques
- No restrictions on the type of data as long as we stay within theories for which there exist efficient decision procedures.
- Can be adapted to interactions with data transfer

Current and future work

- Prove safety properties other than deadlock-freedom.
- Generate inductive invariant to eliminate potential deadlocks [Bradley and Manna, 2007]
- Adapt to interactions with data transfer

Basic semantic model Method Application Implementation and Experimentation Conclusions
Reference

Bradley, A. R. and Manna, Z. (2007).

Checking safety by inductive generalization of counterexamples to induction. In *FMCAD*, pages 173-180.

Cobleigh, J. M., Avrunin, G. S., and Clarke, L. A. (2008).

Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning.

ACM Transactions on Software Engineering and Methodology, 17(2).