What else is decidable about integer arrays ?

Peter Habermehl ${ }^{1,2}$ Radu losif ${ }^{3} \quad$ Tomas Vojnar ${ }^{4}$

${ }^{1}$ LSV, ENS Cachan, CNRS, INRIA
${ }^{2}$ LIAFA, CNRS, Université Paris Diderot
${ }^{3}$ VERIMAG, CNRS, Université Joseph Fourier, INPG
${ }^{4}$ FIT, Brno University of Technology
April 4th, 2008

Motivating example

Verification of programs handling integer arrays

$$
\text { for }(\mathrm{k}=0, \mathrm{I}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++, \mathrm{I}+=2)
$$

$\{\mathrm{c}[\mathrm{l}]=\mathrm{a}[\mathrm{k}]$;

$$
\mathrm{c}[1+1]=\mathrm{b}[\mathrm{k}] ;\}
$$

Motivating example

Verification of programs handling integer arrays
$\{\{\mathbf{n}>\mathbf{0} \wedge \forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{n} \rightarrow \mathbf{a}[\mathbf{i}] \leq \mathbf{b}[\mathbf{j}]\}\}$
for $(\mathrm{k}=0, \mathrm{I}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++, \mathrm{I}+=2$)
$\{c[l]=a[k] ;$

$$
\mathrm{c}[1+1]=\mathrm{b}[\mathrm{k}] ;\}
$$

Motivating example

Verification of programs handling integer arrays
$\{\{\mathbf{n}>\mathbf{0} \wedge \forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{n} \rightarrow \mathbf{a}[\mathbf{i}] \leq \mathbf{b}[\mathbf{j}]\}\}$
for ($k=0, \mathrm{I}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++, \mathrm{I}+=2$)
$\{\mathrm{c}[\mathrm{l}]=\mathrm{a}[\mathrm{k}]$;

$$
\mathrm{c}[1+1]=\mathrm{b}[\mathrm{k}] ;\}
$$

$\left\{\left\{\mathbf{n}>\mathbf{0} \wedge \forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{2 n} \wedge \mathbf{i} \equiv \mathbf{2} \mathbf{0} \wedge \mathbf{j} \equiv{ }_{\mathbf{2}} \mathbf{1} \rightarrow \mathbf{c}[\mathbf{i}] \leq \mathbf{c}[\mathbf{j}]\right\}\right\}$

Motivating example

Verification of programs handling integer arrays

$$
\{\{\mathbf{n}>\mathbf{0} \wedge \forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{n} \rightarrow \mathbf{a}[\mathbf{i}] \leq \mathbf{b}[\mathbf{j}]\}\}
$$

$$
\text { for }(k=0, \mathrm{l}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++, \mathrm{I}+=2)
$$

$$
\{\{\mathbf{n}>\mathbf{0} \wedge \mathbf{k} \leq \mathbf{n} \wedge \mathbf{I}=\mathbf{2 k} \wedge
$$

$$
\forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{2 k} \wedge \mathbf{i} \equiv_{2} \mathbf{0} \wedge \mathbf{j} \equiv 2 \mathbf{1} \rightarrow \mathbf{c}[\mathbf{i}] \leq \mathbf{c}[\mathbf{j}] \wedge
$$

$$
\forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{n} \rightarrow \mathbf{a}[\mathbf{i}] \leq \mathbf{b}[\mathbf{j}]\}\}
$$

$\{c[1]=a[k]$;

$$
\mathrm{c}[l+1]=\mathrm{b}[\mathrm{k}] ;\}
$$

$\{\{\mathbf{n}>\mathbf{0} \wedge \forall \mathbf{i}, \mathbf{j} . \mathbf{0} \leq \mathbf{i}, \mathbf{j}<\mathbf{2 n} \wedge \mathbf{i} \equiv \mathbf{2} \mathbf{0} \wedge \mathbf{j} \equiv \mathbf{2} \mathbf{1} \rightarrow \mathbf{c}[\mathbf{i}] \leq \mathbf{c}[\mathbf{j}]\}\}$

Example verification condition

to prove the invariant check validity of :
$\forall \mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}, \mathbf{c}, \mathbf{c}^{\prime}, \mathbf{n}, \mathbf{n}^{\prime}, \mathbf{k}, \mathbf{k}^{\prime}, \mathbf{I}, \mathbf{I}^{\prime}$.

$$
n>0 \wedge k \leq n \wedge I=2 k \wedge
$$

$\left(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<2 k \wedge i \equiv_{2} 0 \wedge j \equiv_{2} 1 \rightarrow c[i] \leq c[j]\right) \wedge$
$(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<n \rightarrow a[i] \leq b[j]) \wedge$
$k<n \wedge k^{\prime}=k+1 \wedge I^{\prime}=I+2 \wedge n^{\prime}=n \wedge$
$\left(\forall \mathbf{i} \cdot a^{\prime}[i]=a[i]\right) \wedge\left(\forall \mathbf{i} \cdot b^{\prime}[i]=b[i]\right) \wedge$
$\left(\forall \mathbf{i} . i<I \rightarrow c^{\prime}[i]=c[i]\right) \wedge\left(\forall \mathbf{i} . i>I+1 \rightarrow c^{\prime}[i]=c[i]\right) \wedge$
$c^{\prime}[I]=a[k] \wedge c^{\prime}[I+1]=b[k]$
$n^{\prime}>0 \wedge k^{\prime} \leq n^{\prime} \wedge l^{\prime}=2 k^{\prime} \wedge$
$\left(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<2 k^{\prime} \wedge i \equiv_{2} 0 \wedge j \equiv_{2} 1 \rightarrow c^{\prime}[i] \leq c^{\prime}[j]\right) \wedge$
$\left(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<n \rightarrow a^{\prime}[i] \leq b^{\prime}[j]\right)$

Example verification condition

 check satisfiability of$\exists \mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}, \mathbf{c}, \mathbf{c}^{\prime}, \mathbf{n}, \mathbf{n}^{\prime}, \mathbf{k}, \mathbf{k}^{\prime}, \mathbf{I}, \mathbf{l}^{\prime}$.

$$
n>0 \wedge k \leq n \wedge I=2 k \wedge
$$

$\left(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<2 k \wedge i \equiv_{2} 0 \wedge j \equiv_{2} 1 \rightarrow c[i] \leq c[j]\right) \wedge$
$(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<n \rightarrow a[i] \leq b[j]) \wedge$
$k<n \wedge k^{\prime}=k+1 \wedge I^{\prime}=I+2 \wedge n^{\prime}=n \wedge$
$\left(\forall \mathbf{i} \cdot a^{\prime}[i]=a[i]\right) \wedge\left(\forall \mathbf{i} \cdot b^{\prime}[i]=b[i]\right) \wedge$
$\left(\forall \mathbf{i} . i<I \rightarrow c^{\prime}[i]=c[i]\right) \wedge\left(\forall \mathbf{i} . i>I+1 \rightarrow c^{\prime}[i]=c[i]\right) \wedge$
$c^{\prime}[I]=a[k] \wedge c^{\prime}[I+1]=b[k]$
$\left(n^{\prime} \leq 0 \vee k^{\prime}>n^{\prime} \vee l^{\prime}<2 k^{\prime} \vee l^{\prime}>2 k^{\prime} \vee\right.$
$\left(\exists \mathbf{i}, \mathbf{j} .0 \leq i, j<2 k^{\prime} \wedge i \equiv_{2} 0 \wedge j \equiv_{2} 1 \wedge c^{\prime}[i]>c^{\prime}[j]\right) \vee$
$\left.\left(\exists \mathbf{i}, \mathbf{j} .0 \leq i, j<n \wedge a^{\prime}[i]>b^{\prime}[j]\right)\right)$

Example verification condition

 check satisfiability of$$
\begin{aligned}
& \exists \mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}, \mathbf{c}, \mathbf{c}^{\prime}, \mathbf{n}, \mathbf{n}^{\prime}, \mathbf{k}, \mathbf{k}^{\prime}, \mathbf{I}, I^{\prime}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{j}_{1}, \mathbf{j}_{2} . \\
& n>0 \wedge \wedge k \leq n \wedge I=2 k \wedge \\
& \quad\left(\forall \mathbf{i}, \mathbf{j} \cdot 0 \leq i, j<2 k \wedge i \equiv 20 \wedge j \equiv{ }_{2} 1 \rightarrow c[i] \leq c[j]\right) \wedge \\
& \quad(\forall \mathbf{i}, \mathbf{j} .0 \leq i, j<n \rightarrow a[i] \leq b[j]) \wedge \\
& \\
& k<n \wedge k^{\prime}=k+1 \wedge I^{\prime}=I+2 \wedge n^{\prime}=n \wedge \\
& \left(\forall \mathbf{i} \cdot a^{\prime}[i]=a[i]\right) \wedge\left(\forall \mathbf{i} . b^{\prime}[i]=b[i]\right) \wedge \\
& \quad\left(\forall \mathbf{i} . i<I \rightarrow c^{\prime}[i]=c[i] \wedge\left(\forall \mathbf{i} \cdot i>I+1 \rightarrow c^{\prime}[i]=c[i]\right) \wedge\right. \\
& \\
& c^{\prime}[I]=a[k] \wedge c^{\prime}[I+1]=b[k] \\
& \wedge \\
& \left(n^{\prime} \leq 0 \vee k^{\prime}>n^{\prime} \vee I^{\prime}<2 k^{\prime} \vee I^{\prime}>2 k^{\prime} \vee\right. \\
& \\
& \left(0 \leq i_{1}, j_{1}<2 k^{\prime} \wedge i_{1} \equiv{ }_{2} 0 \wedge j_{1} \equiv{ }_{2} 1 \wedge c^{\prime}\left[i_{1}\right]>c^{\prime}\left[j_{1}\right]\right) \vee \\
& \\
& \left.\left(0 \leq i_{2}, j_{2}<n \wedge a^{\prime}\left[i_{2}\right]>b^{\prime}\left[j_{2}\right]\right)\right)
\end{aligned}
$$

Introduction

- Goal: A decidable logic over integer arrays powerful enough to decide verification conditions
- one needs to express properties of the form $\exists^{*} \forall^{*}(G \rightarrow V)$
- leads to undecidability
- restriction is needed
- [Bradley et al. 2006] and [Bouajjani et al. 2007] do not allow simultaneous references to $a[i]$ and $a[i+1]$
- here, we do not allow disjunctions in V

Easier example and sketch of decision procedure

$$
\exists k . \forall i .(0 \leq i<k) \rightarrow a[i]+1 \leq b[i+1]
$$

- we consider bothways infinite arrays

Easier example and sketch of decision procedure

$$
\exists k . \forall i .(0 \leq i<k) \rightarrow a[i]+1 \leq b[i+1]
$$

- we consider bothways infinite arrays
- decision procedure :
- transform a formula into a normal form (composed of simple formulae)
\star models of simple formulae correspond to (infinite) constraint graphs
- given a simple formula φ construct a counter automaton A_{φ}
\star one counter for the position in the arrays
\star a counter for each array
* recognizes bi-infinite sequences
- check emptiness of A_{φ}
\star The language of A_{φ} corresponds to models of the constraint graph and models of φ
\star Emptiness of this type of counter automaton is decidable

Example translation

$$
\exists k . \forall i .(0 \leq i<k) \rightarrow a[i]+1 \leq b[i+1]
$$

Example translation

$$
\exists k . \forall i .(0 \leq i<k) \rightarrow a[i]+1 \leq b[i+1]
$$

corresponds to
$\begin{array}{ll}a & \bullet \\ b & \bullet\end{array}$

Example translation

$$
\exists k . \forall i .(0 \leq i<k) \rightarrow a[i]+1 \leq b[i+1]
$$

corresponds to

and is translated into

where tick : $x_{\tau}^{\prime}=x_{\tau}+1$

Flat bi-infinite Büchi counter automata (FBCA)

- A FBCA A is a tuple $\langle\mathbf{x}, Q, L, R, \rightarrow\rangle$ where
- \mathbf{x} is a set of counters
\star including a set \mathbf{k} of parameters whose values never change
- Q is the set of states,
- $L \subset Q$ and $R \subset Q$ are the left and right accepting states,
$\rightarrow \rightarrow$ is the transition relation given by rules $q \xrightarrow{\varphi\left(\mathrm{x}, \mathrm{x}^{\prime}\right)} q^{\prime}$
$\star \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a parametric difference constraint formula (conjunction of terms like $x-y^{\prime} \leq c$ but also $x \leq k$ where k is a parameter)
- The control structure is flat (no nested loops)

Flat bi-infinite Büchi counter automata (FBCA)

- A FBCA A is a tuple $\langle\mathbf{x}, Q, L, R, \rightarrow\rangle$ where
- \mathbf{x} is a set of counters
\star including a set \mathbf{k} of parameters whose values never change
- Q is the set of states,
- $L \subset Q$ and $R \subset Q$ are the left and right accepting states,
$\rightarrow \rightarrow$ is the transition relation given by rules $q \xrightarrow{\varphi\left(\mathrm{x}, \mathrm{x}^{\prime}\right)} q^{\prime}$
$\star \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a parametric difference constraint formula (conjunction of terms like $x-y^{\prime} \leq c$ but also $x \leq k$ where k is a parameter)
- The control structure is flat (no nested loops)
- A configuration c is tuple (q, ν) with $q \in Q$ and ν a valuation of the counters

Flat bi-infinite Büchi counter automata (FBCA)

- A FBCA A is a tuple $\langle\mathbf{x}, Q, L, R, \rightarrow\rangle$ where
- x is a set of counters
\star including a set \mathbf{k} of parameters whose values never change
- Q is the set of states,
- $L \subset Q$ and $R \subset Q$ are the left and right accepting states,
- \rightarrow is the transition relation given by rules $q \xrightarrow{\varphi\left(\mathrm{x}, \mathrm{x}^{\prime}\right)} q^{\prime}$
$\star \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a parametric difference constraint formula (conjunction of terms like $x-y^{\prime} \leq c$ but also $x \leq k$ where k is a parameter)
- The control structure is flat (no nested loops)
- A configuration c is tuple (q, ν) with $q \in Q$ and ν a valuation of the counters
- FBCA accept bi-infinite sequences of configurations of the form $\ldots c_{-2} c_{-1} c_{0} c_{1} c_{2} \ldots$ such that a state of L (resp. R) is visited infinitely often on the left (resp. right)

Emptiness of FBCA is decidable

- Fix a left-accepting state $/$ and a right accepting state r with loops γ and δ

Emptiness of FBCA is decidable

- Fix a left-accepting state $/$ and a right accepting state r with loops γ and δ
- There is an accepting run through $/$ and r iff

$$
\Phi_{I, r}: \exists \mathbf{x} \exists \mathbf{x}^{\prime} . I_{l, \overleftarrow{\gamma}}(\mathbf{x}) \wedge R_{l, r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \wedge I_{r, \delta}\left(\mathbf{x}^{\prime}\right)
$$

is satisfiable

- $I_{I, \overleftarrow{\gamma}}(\mathbf{x})$: There is an infinite computation along $\overleftarrow{\gamma}$ starting from \mathbf{x}
- $R_{l, r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$: There is a computation from $/$ to r
- $I_{r, \delta}\left(\mathbf{x}^{\prime}\right)$: There is an infinite computation along δ starting from \mathbf{x}^{\prime}

Emptiness of FBCA is decidable

- Fix a left-accepting state $/$ and a right accepting state r with loops γ and δ
- There is an accepting run through $/$ and r iff

$$
\Phi_{I, r}: \exists \mathbf{x} \exists \mathbf{x}^{\prime} . I_{l, \overleftarrow{\gamma}}(\mathbf{x}) \wedge R_{l, r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \wedge I_{r, \delta}\left(\mathbf{x}^{\prime}\right)
$$

is satisfiable

- $I_{I, \overleftarrow{\gamma}}(\mathbf{x})$: There is an infinite computation along $\overleftarrow{\gamma}$ starting from \mathbf{x}
- $R_{l, r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$: There is a computation from $/$ to r
- $I_{r, \delta}\left(\mathbf{x}^{\prime}\right)$: There is an infinite computation along δ starting from \mathbf{x}^{\prime}
- The formulae can be given using the theory of (flat) counter automata with difference constraints [Comon, Jurski 1998] [Bozga, losif 2006]

Array logic (LIA) and its decision procedure

- Syntax
- $\exists \mathbf{k} \exists \mathbf{a} \mathcal{B C}(\forall \mathbf{i} . \mathbf{G} \rightarrow \mathbf{V})$
- G is of the form $\bigvee \bigwedge \varphi(\mathbf{k}, \mathbf{i})$
$\star \varphi$ is either a difference constraint (like $i-j \leq c$) or a modulo constraint (like $i \equiv{ }_{s} c$)
- V is of the form $\bigwedge \psi(\mathbf{a}, \mathbf{k}, \mathbf{i})$
$\star \psi$ is a difference constraint on array value expressions (like $a[i]-b[i+n] \leq c)$

Array logic (LIA) and its decision procedure

- Syntax
- $\exists \mathbf{k} \exists \mathbf{a} \mathcal{B C}(\forall \mathbf{i} . \mathbf{G} \rightarrow \mathbf{V})$
- G is of the form $\bigvee \bigwedge \varphi(\mathbf{k}, \mathbf{i})$
$\star \varphi$ is either a difference constraint (like $i-j \leq c$) or a modulo constraint (like $i \equiv{ }_{s} c$)
- V is of the form $\bigwedge \psi(\mathbf{a}, \mathbf{k}, \mathbf{i})$
$\star \psi$ is a difference constraint on array value expressions (like $a[i]-b[i+n] \leq c)$
- Decision procedure :
- transform a formula into a normal form (composed of simple formulae)
* models of simple formulae correspond to (infinite) constraint graphs
- given a simple formula φ construct a counter automaton A_{φ}

Normal form

Every LIA formula can be written equivalently in the following normal form

$$
\begin{equation*}
\exists \mathbf{k} \exists \mathbf{a} \cdot \bigvee_{p}\left(\bigwedge_{q} \phi_{p q}(\mathbf{a}, \mathbf{k})\right) \wedge \theta_{p}(\mathbf{k}) \tag{NF}
\end{equation*}
$$

where \mathbf{a} is a set of array variables, \mathbf{k} is a set of integer variables, and

- θ_{p} is a conjunction of terms of the forms:
- $g(\mathbf{k}) \geq 0$
- $g(\mathbf{k}) \equiv_{s} t$
where g is a linear combination of the variables in \mathbf{k}, and $0 \leq t<s$

Normal form

- $\phi_{p q}$ is a formula of the following forms, for $\sim \in\{\leq, \geq\}$ and some $m \in \mathbb{N}, 0 \leq t<s, 0 \leq v<u, p, q \in \mathbb{Z}$ and the $f_{k}, g_{k}, f_{k}^{1}, g_{k}^{1}, f_{k}^{2}, g_{k}^{2}, h(\mathbf{k})$ are linear combinations of parameters

$$
\begin{equation*}
\forall i . \bigwedge_{k=1}^{K} f_{k} \leq i \wedge \bigwedge_{l=1}^{L} i \leq g_{l} \wedge i \equiv_{s} t \rightarrow a[i] \sim h(\mathbf{k}) \tag{F1}
\end{equation*}
$$

Normal form

- $\phi_{p q}$ is a formula of the following forms, for $\sim \in\{\leq, \geq\}$ and some $m \in \mathbb{N}, 0 \leq t<s, 0 \leq v<u, p, q \in \mathbb{Z}$ and the $f_{k}, g_{k}, f_{k}^{1}, g_{k}^{1}, f_{k}^{2}, g_{k}^{2}, h(\mathbf{k})$ are linear combinations of parameters

$$
\begin{array}{r}
\forall i \cdot \bigwedge_{k=1}^{K} f_{k} \leq i \wedge \bigwedge_{l=1}^{L} i \leq g_{l} \wedge i \equiv_{s} t \rightarrow a[i] \sim h(\mathbf{k}) \\
\forall i \cdot \bigwedge_{k=1}^{K} f_{k} \leq i \wedge \bigwedge_{l=1}^{L} i \leq g_{l} \wedge i \equiv_{s} t \rightarrow a[i]-b[i+p] \sim q \tag{F2}
\end{array}
$$

Normal form

- $\phi_{p q}$ is a formula of the following forms, for $\sim \in\{\leq, \geq\}$ and some $m \in \mathbb{N}, 0 \leq t<s, 0 \leq v<u, p, q \in \mathbb{Z}$ and the $f_{k}, g_{k}, f_{k}^{1}, g_{k}^{1}, f_{k}^{2}, g_{k}^{2}, h(\mathbf{k})$ are linear combinations of parameters

$$
\begin{gather*}
\forall i . \bigwedge_{k=1}^{K} f_{k} \leq i \wedge \bigwedge_{l=1}^{L} i \leq g_{l} \wedge i \equiv_{s} t \rightarrow a[i] \sim h(\mathbf{k}) \\
\forall i \cdot \bigwedge_{k=1}^{K} f_{k} \leq i \wedge \bigwedge_{l=1}^{L} i \leq g_{l} \wedge i \equiv_{s} t \rightarrow a[i]-b[i+p] \sim q \quad(\mathrm{~F} 2) \tag{F2}\\
\forall i, j \cdot \bigwedge_{k=1}^{K_{1}} f_{k}^{1} \leq i \wedge \bigwedge_{l=1}^{L_{1}} i \leq g_{l}^{1} \wedge \bigwedge_{k=1}^{K_{2}} f_{k}^{2} \leq j \wedge \bigwedge_{l=1}^{L_{2}} j \leq g_{l}^{2} \wedge \\
i-j \leq p \wedge i \equiv_{s} t \wedge j \equiv_{u} v \rightarrow a[i]-b[j] \sim q \tag{F3}
\end{gather*}
$$

Decision procedure

- transform a formula into a normal form (composed of simple formulae)
- models of simple formulae correspond to (infinite) constraint graphs
- given a simple formula φ construct a counter automaton A_{φ}

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i . I \leq i \leq u \wedge i \equiv 20 \rightarrow a[i] \leq h(\mathbf{k})$

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i . l \leq i \leq u \wedge i \equiv_{2} 0 \rightarrow a[i]-b[i+3] \leq 5$

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i, j . \iota_{1} \leq i \leq u_{1} \wedge l_{2} \leq j \leq u_{2} \wedge i-j \leq 3 \wedge i \equiv{ }_{2} 0 \wedge j \equiv_{2} 1 \rightarrow a[i]-b[j] \leq 5$

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i, j . \iota_{1} \leq i \leq u_{1} \wedge l_{2} \leq j \leq u_{2} \wedge i-j \leq 3 \wedge i \equiv{ }_{2} 0 \wedge j \equiv_{2} 1 \rightarrow a[i]-b[j] \leq 5$

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i, j . \iota_{1} \leq i \leq u_{1} \wedge l_{2} \leq j \leq u_{2} \wedge i-j \leq 3 \wedge i \equiv{ }_{2} 0 \wedge j \equiv_{2} 1 \rightarrow a[i]-b[j] \leq 5$

Formulae \rightarrow Constraint graphs

Constraint graph for $\forall i, j . I_{1} \leq i \leq u_{1} \wedge I_{2} \leq j \leq u_{2} \wedge i \equiv_{2} 0 \wedge j \equiv_{2} 1$ $\rightarrow a[i]-b[j] \leq 5$

Decision procedure

- transform a formula into a normal form (composed of simple formulae)
- models of simple formulae correspond to (infinite) constraint graphs
- given a simple formula φ construct a counter automaton A_{φ}

From constraint graphs to counter automata

- For each type of edge (horizontal, vertical and diagonal), we have a different automaton template ($A_{\text {hor }}, A_{\text {ver }}$ and $A_{\text {diag }}$).

From constraint graphs to counter automata

- For each type of edge (horizontal, vertical and diagonal), we have a different automaton template ($A_{\text {hor }}, A_{\text {ver }}$ and $A_{\text {diag }}$).
- Instances of these automata templates can then be composed by a product to obtain the automaton corresponding to a simple formula

From constraint graphs to counter automata

- For each type of edge (horizontal, vertical and diagonal), we have a different automaton template ($A_{\text {hor }}, A_{\text {ver }}$ and $A_{\text {diag }}$).
- Instances of these automata templates can then be composed by a product to obtain the automaton corresponding to a simple formula
- to obtain the automaton A_{φ} corresponding to φ we build the automata for each simple formula of the normal form of φ and compose them

From constraint graphs to counter automata

- For each type of edge (horizontal, vertical and diagonal), we have a different automaton template ($A_{\text {hor }}, A_{\text {ver }}$ and $A_{\text {diag }}$).
- Instances of these automata templates can then be composed by a product to obtain the automaton corresponding to a simple formula
- to obtain the automaton A_{φ} corresponding to φ we build the automata for each simple formula of the normal form of φ and compose them
- The automata synchronize on common variables

Counter automata for formulae

The FBCA for the vertical edges in the formula
$\varphi: \forall i, j . \iota_{1} \leq i \leq u_{1} \wedge \iota_{2} \leq j \leq u_{2} \wedge i-j \leq 3 \wedge i \equiv_{2} 0 \wedge j \equiv 21 \rightarrow a[i]-b[j] \leq 5$

Counter automata for formulae

The FBCA for the diagonal edges in the formula
$\varphi: \forall i, j . \iota_{1} \leq i \leq u_{1} \wedge \iota_{2} \leq j \leq u_{2} \wedge i-j \leq 3 \wedge i \equiv_{2} 0 \wedge j \equiv 21 \rightarrow a[i]-b[j] \leq 5$

Future work

- Studying complexity
- Implementation (of a restricted logic)
- Invariant generation
- Extensions, restrictions

Logic of Integer Arrays (LIA) syntax

n, m, s, t.	$\in \mathbb{Z}$
k, I,	$\in B V a r$
i,j,	$\in \mathrm{IVar}$
a, b, \ldots	AVar
B	$:=n\|k\| B+B \mid B-B$
1	$:=i \mid l+n$
A	$:=a[l] \mid a[B]$
$G:=B \leq 1$	$\|I \leq B\| I-I \leq n\left\|I \equiv_{s} t\right\| G \vee G \mid G \wedge G$
V	$:=A \leq B\|B \leq A\| A-A \leq n \mid V \wedge V$
C	$:=B \leq n \mid B \equiv_{s} t$
P	$:=T \rightarrow V\|G \rightarrow V\| \forall i . P$
U	$:=P\|C\| \neg U\|U \vee U\| U \wedge U$
F	:= U\| ${ }^{\text {a }}$.F\|ヨa.F

constants $(0 \leq t<s)$
array-bound variables index variables array variables
array-bound terms index terms array terms guard expressions value expressions array-bound constraints array properties universal formulae
LIA formulae

