Fine Grain Quality Management

Jacques Combaz Jean-Claude Fernandez Mohamad Jaber Joseph Sifakis Loïc Strus

> Verimag Lab. Université Joseph Fourier Grenoble, France

DCS seminar, 10 June 2008, Col de Porte

Combaz, Fernandez, Jaber, Sifakis, Strus () Fine Grain Quality Management

→ ∃ →

Outline

Motivations

- Video Encoder
- Problem & Approaches

2 Fine Grain QoS Control

- Model
- Approach
- Summary

Stochastic Approach

- Model & Problem
- Stochastic Mixed Quality Management Policy
- Performance Analysis
- Conclusion

Learning

- Problem
- Neural networks
- Experimental results

Motivations

- Video Encoder
- Problem & Approaches
- 2 Fine Grain QoS Control
 - Model
 - Approach
 - Summary
- 3 Stochastic Approach
 - Model & Problem
 - Stochastic Mixed Quality Management Policy
 - Performance Analysis
 - Conclusion

4 Learning

- Problem
- Neural networks
- Experimental results

Video Encoder

- collaboration with STMicroelectronics (GaloGiC project)
- embedded video encoder

Video Encoder

- collaboration with STMicroelectronics (GaloGiC project)
- embedded video encoder

- real-time constraints (e.g. D = 1/30 s = 33 ms)
- limited resources
- intensive computing
- uncertainty on execution times
- we propose an online adaptation of the quality level parameters q

Problem & Approaches

Problem (embedded video encoder)

- meet the deadlines
 - input buffer minimization
 - avoid frame skipping
- optimal use of resources
 - QoS maximization

Problem & Approaches

Problem (embedded video encoder)

- meet the deadlines
 - input buffer minimization
 - avoid frame skipping
- optimal use of resources
 - QoS maximization

Existing Approaches

- hard real-time (critical system engineering)
 - worst-case analysis
 - meet the deadlines
- soft real-time (best-effort engineering)
 - \bullet average-case analysis \rightarrow no guarantee
 - efficient use of resources

Problem & Approaches

Problem (embedded video encoder)

- meet the deadlines
 - input buffer minimization
 - avoid frame skipping
- optimal use of resources
 - QoS maximization

Our Approach

- bridging the gap by using adaptive techniques
- adapting software behaviour by setting quality level parameters
- optimal use of computing resources with real-time guarantees

Motivation

- Video Encoder
- Problem & Approaches

Fine Grain QoS Control

- Model
- Approach
- Summary
- 3 Stochastic Approach
 - Model & Problem
 - Stochastic Mixed Quality Management Policy
 - Performance Analysis
 - Conclusion

4 Learning

- Problem
- Neural networks
- Experimental results

Model

Application Software

 s_i : control point

 a_i : actions parameterized by integer quality levels $q_i \in Q = [q_{min}, q_{max}]$

Model

Application Software

$$(S_0) \xrightarrow{a_1} (S_1) \xrightarrow{a_2} \dots \xrightarrow{a_n} (S_n)$$

s_i: control point

 a_i : actions parameterized by integer quality levels $q_i \in Q = [q_{min}, q_{max}]$

Estimates of Execution Times (increasing with guality)

 $C^{av}(a_i, q)$: average execution time of a_i at the quality level q $C^{wc}(a_i, q)$: worst-case execution time of a_i at the quality level q

< ロ > < 同 > < 回 > < 回 >

Model

Application Software

 s_i : control point

 a_i : actions parameterized by integer quality levels $q_i \in Q = [q_{min}, q_{max}]$

Estimates of Execution Times (increasing with quality)

 $C^{av}(a_i, q)$: average execution time of a_i at the quality level q $C^{wc}(a_i, q)$: worst-case execution time of a_i at the quality level q

Real-Time Constraints

D: deadline for the completion of the actions

Combaz, Fernandez, Jaber, Sifakis, Strus ()

Fine Grain Quality Management

Approach

Quality Management Problem

Application software:

The Problem

find quality level parameters q_i such that:

- safety deadlines are met
- optimality maximization of the quality levels
- smoothness of the quality levels
- \rightarrow online computation of the quality levels q_i

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quality Manager Design

• remaining execution time (estimate) for quality q: $C^{\chi}(a_i...a_n, q)$

• *feasibility* criterion: $D \ge C^{X}(a_{i}..a_{n},q) + t_{i-1}$

• we define
$$t^X(s_{i-1},q) = D - C^X(a_i..a_n,q)$$

Quality Management Policy X at state (s_{i-1}, t_{i-1})

choosing the best quality level which is feasible, i.e.:

$$q_i := \max \{ q \mid t^X(s_{i-1}, q) \ge t_{i-1} \}$$

Fine Grain QoS Control Approach

Mixed Quality Management Policy [EMSOFT'05, RTS]

Fine Grain QoS Control Approach

Mixed Quality Management Policy [EMSOFT'05,RTS]

average behavior: $C^{av}(a_i..a_n,q) = C^{av}(a_i,q) + \ldots + C^{av}(a_n,q)$ ٥

Combaz, Fernandez, Jaber, Sifakis, Strus () Fine Grain Quality Management 10/25 DCS seminar, 10 June 2008

Mixed Quality Management Policy [EMSOFT'05,RTS]

- average behavior: $C^{av}(a_i..a_n,q) = C^{av}(a_i,q) + \ldots + C^{av}(a_n,q)$ ٢
- worst-case behavior (under control): • $C^{sf}(a_{i}..a_{n},q) = C^{wc}(a_{i},q) + C^{wc}(a_{i+1},q_{min}) + \ldots + C^{wc}(a_{n},q_{min})$

Mixed Quality Management Policy [EMSOFT'05,RTS]

- average behavior: $C^{av}(a_i..a_n,q) = C^{av}(a_i,q) + \ldots + C^{av}(a_n,q)$ ٢
- worst-case behavior (under control): • $C^{sf}(a_{i}..a_{n},q) = C^{wc}(a_{i},q) + C^{wc}(a_{i+1},q_{min}) + \ldots + C^{wc}(a_{n},q_{min})$

$$C^{mx} = C^{av} + \delta^{max}$$
, where

$$\delta^{max}(a_i...a_n,q) = \max \left\{ \left. C^{sf}(a_j...a_n,q) - C^{av}(a_j...a_n,q) \right\} \left| j \ge j \right\} \right\}$$

Summary

- (+) fine grain quality management mixed policy:
 - improves predictability
 - reduces the impact of the worst-case (measured by δ^{max})
 - safety, optimality, smoothness

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- (+) fine grain quality management mixed policy:
 - improves predictability
 - reduces the impact of the worst-case (measured by δ^{max})
 - safety, optimality, smoothness
- (-) limitations worst-case estimates:
 - complex HW platforms computation of worst-case estimates
 - non-flexibility only 100% guarantee
 - Iow predictability and low time budget utilization for:

controllable uncontrollable $\delta^{max}(a_1a_2, \dots, a_j, a_{j+1}a_{j+2}, \dots, a_n, q)$ can be sizable

イロン イ理 とくほ とくほ とう

Summary

- (+) fine grain quality management mixed policy:
 - improves predictability
 - reduces the impact of the worst-case (measured by δ^{max})
 - safety, optimality, smoothness
- (-) limitations worst-case estimates:
 - complex HW platforms computation of worst-case estimates
 - non-flexibility only 100% guarantee
 - Iow predictability and low time budget utilization for:

controllable uncontrollable $\delta^{max}(a_1a_2, \dots, a_j, a_{j+1}a_{j+2}, \dots, a_n, q)$ can be sizable

11/25

 \rightarrow we need $soft\ real-time\ methodologies\ that\ provide\ guarantees\ \&\ predictability$

Motivations

- Video Encoder
- Problem & Approaches

2 Fine Grain QoS Control

- Model
- Approach
- Summary

Stochastic Approach

- Model & Problem
- Stochastic Mixed Quality Management Policy
- Performance Analysis
- Conclusion

Learning

- Problem
- Neural networks
- Experimental results

∃ >

Model & Problem

Estimates of the Execution Times

the integer probability distribution function d_i^q :

- $d_i^q : \mathbb{N} \to [0, 1]$
- $d_i^q(k) = \mathsf{P}["$ execution time of a_i at quality q is k"]

•
$$\sum_{k=0}^{+\infty} d_i^q(k) = 1$$

independent execution times

Problem

1-~

find a Quality Manager Γ s.t.:

- safety the deadline miss ratio is \leq a target ratio $\mu \in [0, 1]$
- optimality maximization of the quality levels
- smoothness of the quality levels

Stochastic Mixed Quality Management Policy

14/25

Stochastic Mixed Quality Management Policy

• probabilistic worst-case execution time $C_{\tau}^{wc}(a_i, q)$ s.t.:

$$C^{wc}_{ au}(a_i,q) = \min \left\{ \left| I \right| \sum_{k=l}^{+\infty} d^q_i(k) \leq au
ight\}$$

Combaz, Fernandez, Jaber, Sifakis, Strus () Fine Grain Quality Management DCS seminar,

A .

Stochastic Mixed Quality Management Policy

• probabilistic worst-case execution time $C_{\tau}^{wc}(a_i, q)$ s.t.:

$$C^{wc}_{ au}(a_i,q) = \min \left\{ \left| 1 \right| \sum_{k=l}^{+\infty} d^q_i(k) \le \tau
ight\}$$

• average execution time (mean value): $C^{av}(a_i,q) = \sum k d_i^q(k)$

14/25

d_i: probability distribution for actual time *t_i* (completion of *a*₁..*a_i*)
recursive computation of *d_i*:

$$d_i(k) = \sum_{l=0}^{+\infty} d_{i-1}(l) d_i^{q_i}(k-l)$$
, where $q_i = \Gamma(s_{i-1}, l)$

A (10) > A (10) > A (10)

d_i: probability distribution for actual time *t_i* (completion of *a*₁..*a_i*)
recursive computation of *d_i*:

$$d_i(k) = \sum_{l=0}^{+\infty} d_{i-1}(l) d_i^{q_i}(k-l)$$
, where $q_i = \Gamma(s_{i-1}, l)$

Performance of the Quality Manager Γ

expected deadline miss ratio: P[t_n > D] = ∑_{k>D} d_n(k)
expected time budget utilization: E(t_n) = ∑^{+∞} kd_n(k)

< 🗇 >

æ

16/25

< (⊐) >

2

16/25

DCS seminar, 10 June 2008 16 / 25

2

< E

< 🗇 >

2

Conclusion

stochastic mixed quality management policy:

- soft real-time guarantees
- achieving a tradeoff time budget utilization / deadline miss ratio
- parameterized worst-case scenario influence:

• code reuse: one source for different target HWs / QoS requirements

• perspectives:

- depencies between execution times
- multiple tasks, multiple processors, operating systems

Learning

Motivation:

- Video Encoder
- Problem & Approaches

2 Fine Grain QoS Control

- Model
- Approach
- Summary

3 Stochastic Approach

- Model & Problem
- Stochastic Mixed Quality Management Policy
- Performance Analysis
- Conclusion

Learning

- Problem
- Neural networks
- Experimental results

Using worst-case execution time is problematic in some cases !

19/25

Using worst-case execution time is problematic in some cases !

Using worst-case execution time is problematic in some cases !

Using worst-case execution time is problematic in some cases !

19/25

Using worst-case execution time is problematic in some cases !

Refine average execution times

- Better predict the execution time of action using its input
- Using neural netwroks to predict the execution time

Combaz, Fernandez, Jaber, Sifakis, Strus ()

Fine Grain Quality Management

19/25

・ ロ ト ・ 同 ト ・ 三 ト ・ 三

Neural Network

A neural network is defined by:

- $L = \{ L_1, L_2, \dots, L_n \}$
- $w_{ij}^{(l)}$ is the weight
- $\theta_i^{(l)}$ is a scalar bias

- N_l is the number of neurons
- f_l is the activation function

•
$$\mathbf{y}_{i}^{(l)} = \begin{cases} f_{l}(\sum_{j=1}^{N_{l-1}} y_{j}^{(l-1)} w_{ij}^{(l-1)} + \theta_{i}^{(l)}) & \text{if } l \neq 1 \\ x_{i} \text{ (input of neuron } i) & \text{if } l = 1. \end{cases}$$

- **→ → →**

A .

Architecture and learning algorithm

Architecture

- the number of layers (n) one hidden layer approximate every continuous function
- the number of neurons in each layer (N_l) number of input * 2
- the activation functions (f_l) *identity* : $x \mapsto x$ and *sigmoid* : $x \mapsto \frac{1}{1+e^{-\beta x}}$

Learning algorithm

(X, Y) where $X = (x_1, ..., x_{N_1})$ input and $Y = (y_1, ..., y_{N_n})$ desired output. Minimize $E(W) = 1/2 \sum_{j=1}^{N_n} (y_j - y_j^{(n)})^2$.

Select a new sample (X, Y).

Update weights of the output and hidden layers using specific rules, that is, $W \leftarrow W + \Delta W$.

Go to 3 if the error E(W) is above a tolerance value.

Go to 2 if other samples must be learnt.

Experimental framework

MPEG4 video encoder

Use neural networks for computing refined average of uncotrollable actions. We consider $X = (x_1, x_2)$:

- x₁ is the SAD value (sum of absolute difference)
- x₂ is the position of the macroblock

Learning Experimental results

Results

Combaz, Fernandez, Jaber, Sifakis, Strus () Fine Grain Qu

Fine Grain Quality Management

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 DCS seminar, 10 June 2008

23 / 25

크

Results

Combaz, Fernandez, Jaber, Sifakis, Strus ()

Fine Grain Quality Management

24 / 25

Learning Experimental results

Perspective

BIP

Combaz, Fernandez, Jaber, Sifakis, Strus () Fine Grain Quality Management DCS seminar, 10 June 2008

イロト イヨト イヨト イヨト

Э.

25/25