A Notion of Glue Expressiveness for Component-Based Systems

Simon Bliudze, Joseph Sifakis {bliudze, sifakis}@imag.fr VERIMAG, Grenoble

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

- Components are assembled from smaller (atomic) ones by application of glue.
 - A semantic behaviour domain \mathcal{B} .
 - A set \mathcal{G} of glue operators $2^{\mathcal{B}} \to \mathcal{B}$.
- How do we compare two glues $G_1, G_2 \subseteq \mathcal{G}$?
 - Comparison is made by flattening, i.e. directly on \mathcal{B} : $G_1(\mathcal{B}) \stackrel{?}{=} G_2(\mathcal{B})$.
 - Not satisfactory: most formalisms are Turing complete.
- Goal: develop a framework to compare glue, i.e. on $(\mathcal{B}, \mathcal{G})$.

3/20

Assumptions:

- A semantic behaviour domain \mathcal{B} with a relation $\simeq \subseteq \mathcal{B} \times \mathcal{B}$
- A set \mathcal{G} of glue operators $2^{\mathcal{B}} \to \mathcal{B}$

Comparison:

• (Very strong) \simeq induces a relation on \mathcal{G} :

$$G_1 \preccurlyeq G_2 \quad \stackrel{def}{\iff} \quad \forall g_1 \in G_1, \ \exists g_2 \in G_2 : g_1 \simeq g_2.$$

- (Strong) First choose the behaviours, then the operator g_2 .
- (Weak) Allow some additional coordination behaviour.

 $g_1 \simeq g_2 \quad \stackrel{def}{\Longleftrightarrow} \quad \forall \mathbf{B} \subset \mathcal{B}, \ g_1(\mathbf{B}) \simeq g_2(\mathbf{B})$

$$\begin{array}{rcl} G_1 \preccurlyeq G_2 & \stackrel{def}{\iff} & \forall g_1 \in G_1, \ \exists g_2 \in G_2 : g_1 \simeq g_2 \\ & \longleftrightarrow & \forall g_1 \in G_1, \ \exists g_2 \in G_2 : \forall \mathbf{B} \subset \mathcal{B}, \ g_1(\mathbf{B}) \simeq g_2(\mathbf{B}) \end{array}$$

Strong Expressiveness Preorder

 $G_1 \preccurlyeq_S G_2 \quad \stackrel{def}{\Longleftrightarrow} \quad \forall g_1 \in G_1, \forall \mathbf{B} \subset \mathcal{B}, \ \exists g_2 \in G_2 : g_1(\mathbf{B}) \simeq g_2(\mathbf{B})$ /recall $G_1 \preccurlyeq G_2 \quad \iff \quad \forall g_1 \in G_1, \ \exists g_2 \in G_2 : \forall \mathbf{B} \subset \mathcal{B}, \ g_1(\mathbf{B}) \simeq g_2(\mathbf{B})$ /

6/20

Weak Expressiveness Preorder

 $G_1 \preccurlyeq_W G_2 \iff^{def}$

- there exists a **finite** subset $\mathcal{C} \subset \mathcal{B}$ of coordination behaviours, such that
- $\forall g_1 \in G_1, \forall \mathbf{B} \subset \mathcal{B}, \exists \mathbf{C} \subset \mathcal{C}, g_2 \in G_2 : g_1(\mathbf{B}) \simeq g_2(\mathbf{B}, \mathbf{C})$

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

$$B = (Q, P, \rightarrow), \text{ where } \rightarrow \subseteq Q \times 2^P \times Q$$

Relations:

- \sqsubseteq_S simulation preorder,
- \simeq_S simulation equivalence,
- \sqsubseteq_{RS} ready simulation preorder,
- \simeq_{RS} ready simulation equivalence,
- \leftrightarrow bisimulation.

\leftrightarrow	\subseteq	\simeq_{RS}	\subseteq	\simeq_S
		$ \cap$		$ \cap$
		\sqsubseteq_{RS}	\subseteq	\sqsubseteq_S

Simulation but not Ready Simulation equivalent:

Ready Simulation equivalent but not Bisimilar:

10/20

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

A glue operator is a set of derivation rules of the form

$$r = \frac{\left\{q_i \xrightarrow{a_i} q'_i\right\}_{i \in I}}{q_1 \dots q_n \xrightarrow{a} \widetilde{q}_1 \dots \widetilde{q}_n} \left\{q_j \not\xrightarrow{b_{j_k}} \left| k \in [1, m_j]\right\}_{j \in J}\right\}$$

- 1. $a = \bigcup_{i \in I} a_i$.
- 2. For each $i \in [1, n]$, r has **at most one positive premise** involving the *i*-th argument.
- 3. r has at least one positive premise.
- 4. A label can appear either in positive or in negative premises, but not in both.

$$g = \left\{ \frac{q_1 \stackrel{a}{\rightarrow} q'_1}{q_1 q_2 \stackrel{a}{\rightarrow} q'_1 q_2}, \quad \frac{q_1 \stackrel{a}{\rightarrow} q'_1}{q_1 q_2 \stackrel{ac}{\rightarrow} q'_1 q'_2}, \quad \frac{q_1 \stackrel{b}{\rightarrow} q'_1}{q_1 q_2 \stackrel{ac}{\rightarrow} q'_1 q'_2}, \quad \frac{q_1 \stackrel{b}{\rightarrow} q'_1}{q_1 q_2 \stackrel{b}{\rightarrow} q'_1 q_2} \right\}$$

Assumption: No redundant rules in a glue operator, i.e. $r_1, r_2 \in g$, such that

$$Pos(r_1) = Pos(r_2), \quad Neg(r_1) \subseteq Neg(r_2).$$

Th 1 Bisimulation, ready simulation preorder and equivalence, and simulation equivalence on glue operators coincide:

 $\underline{\leftrightarrow}$ = \simeq_{RS} = \simeq_{S} = \sqsubseteq_{RS} .

All these relations coincide with the equality of operators as sets of rules.

Very Strong Comparison too strong.

$$r = \frac{\left\{q_i \xrightarrow{a_i} q'_i\right\}_{i \in I}}{q_1 \dots q_n \xrightarrow{a} \widetilde{q}_1 \dots \widetilde{q}_n} \left\{q_j \not\xrightarrow{b_{j_k}} \left| k \in K_j\right\}_{j \in J}\right\}$$

$$C(r) = \bigwedge_{i \in I} a_i \wedge \bigwedge_{j \in J} \bigwedge_{k \in K_j} \neg b_{j_k}, \qquad g \rightsquigarrow \bigvee_{r \in g} C(r).$$

Syntax:

Axioms:

What does not hold? Essentially $f \vee \neg f \neq 1$, i.e. $ab \vee a \neg b \neq a - a$ is only allowed alone, when b is not possible.

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

 $int_{\gamma} = \bigvee \gamma$ — an interaction model, defined by a set of interactions $\gamma \subseteq 2^{P}$. $pr_{\pi} = \bigvee_{a \in 2^{P}} (a \land \bigwedge_{a \prec a'} \neg a')$ — a priority model π is a strict partial order on 2^{P} .

Prop 1 IM is strongly equivalent to the set of all positive glue operators, whereas BIP is strongly equivalent to the set of all glue operators.

Prop 2 BIP is strongly more expressive than IM w.r.t. \simeq_S (a fortiori \simeq_{RS} and \leftrightarrow). That is IM \preccurlyeq_S BIP and BIP \preccurlyeq_W IM.

Parallel composition in CCS, SCCS, and CSP

 $L = A \cup \overline{A} \cup \{\tau\}$ is the set of labels. C is the set of channels.

CCS: Binary synchronisation of complementary actions $a, \overline{a} \in L$:

$$par_{CCS} = \bigvee_{a \in A} \bigvee_{i,j=1}^{n} B_{i.a} B_{j.\overline{a}} \lor \bigvee_{a \in A} \bigvee_{i=1}^{n} (B_{i.a} \lor B_{i.\overline{a}} \lor B_{i.\tau}).$$

SCCS: All components must synchronise:

$$par_{SCCS} = \bigwedge_{i=1}^{n} \left(B_i \cdot \tau \lor \bigvee_{a \in A} B_i \cdot a \right) \, .$$

CSP: Processes communicate over a set of channels common to the system:

$$par_{CSP} = \bigvee_{c \in C'} \bigwedge_{i=1}^{n} B_{i.c} \lor \bigvee_{c \notin C'} \bigvee_{i=1}^{n} (B_{i.\tau} \lor B_{i.c}).$$

- Three preorders for comparing glue expressiveness.
- For LTS and SOS glue operators,
 - classical equivalence relations coincide,
 - first results for comparison of classical glues according to strong and weak expressiveness preorders.
- Pseudo-boolean encoding of glue operators.

- 1. Complete the diagram in the previous slide.
- 2. Characterisation of the strong expressiveness preorder for all SOS glues (not only positive).
- 3. Operators with influences (positive premises not participating in the conclusion).
- 4. What is a glue operator in the general case?

Labelled Transition System (LTS): $B = (Q, P, \rightarrow)$, where

- Q is the set of states,
- *P* is the set of ports,
- $\rightarrow \subseteq Q \times 2^P \times Q$ is the set of transitions.

Let $B_1 = (Q_1, P_1, \rightarrow)$ and $B_2 = (Q_2, P_2, \rightarrow)$ be two LTS, and let $\mathcal{R} \subseteq Q_1 \times Q_2$ be a binary relation. \mathcal{R} is

- 1. a simulation iff, for all $q_1 \mathcal{R} q_2$, $q_1 \xrightarrow{a} q'_1$ implies $q_2 \xrightarrow{a} q'_2$, for some $q'_2 \in Q_2$ such that $q'_1 \mathcal{R} q'_2$.
- 2. a ready simulation iff it is a simulation and, for $q_1 \mathcal{R} q_2$, $q_1 \not\xrightarrow{q}$ implies $q_2 \not\xrightarrow{q}$.
- 3. a bisimulation iff both \mathcal{R} and \mathcal{R}^{-1} are simulations.

A proof

Lemma 1 Let g_1, g_2 be glue operators, and g_1 be without redundancy. $g_1 \sqsubseteq_S g_2$ implies that, for each rule $r_1 \in g_1$, there is a rule $r_2 \in g_2$ having $Pos(r_2) = Pos(r_1)$ and $Neg(r_2) \subseteq Neg(r_1)$.

Proof — Consider the rule

$$r_1 = \frac{\{q_i \xrightarrow{a_i} q'_i\}_{i \in I} \quad \{q_j \not\xrightarrow{b_{j_k}} | k \in [1, m_j]\}_{j \in J}}{q_1 \dots q_n \xrightarrow{a} \widetilde{q_1} \dots \widetilde{q_n}} \in g_1,$$

and, for $i \in [1, n]$, $B_i^1 = (Q_i, P, \rightarrow_i)$ having $Q_i = \{q^i\}$ and \rightarrow_i defined by

$$\rightarrow_{i} = \begin{cases} \{q^{i} \xrightarrow{a} q^{i} \mid a \in 2^{P}\}, & \text{for } i \notin J, \\ \{q^{i} \xrightarrow{a} q^{i} \mid a \in 2^{P}\} \setminus \{q^{i} \xrightarrow{b_{i_{k}}} q^{i} \mid k \in [1, m_{i}]\}, & \text{for } i \in J. \end{cases}$$

Both $g_1(B_1^1, \ldots, B_n^1)$ and $g_2(B_1^1, \ldots, B_n^1)$ have exactly one state: q' and q''. All the premises of r_1 are satisfied in q'. Hence $q' \xrightarrow{a} q'$ in $g_1(B_1^1, \ldots, B_n^1)$. By simulation $g_1 \sqsubseteq_S g_2$, we also have $g_1(B_1^1, \ldots, B_n^1) \sqsubseteq_S g_2(B_1^1, \ldots, B_n^1)$. Hence, $q'' \xrightarrow{a} q''$ in $g_2(B_1^1, \ldots, B_n^1)$, and there exists a rule $r_2 \in g_2$ enabling this transition. Thus, $Pos(r_2) = Pos(r_1)$ and $Neg(r_2) \subseteq Neg(r_1)$.