A Notion of Glue Expressiveness for Component-Based Systems

verimag

Simon Bliudze, Joseph Sifakis
\{bliudze, sifakis\}@imag.fr
VERIMAG, Grenoble

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

Motivation: Component-Based Systems

- Components are assembled from smaller (atomic) ones by application of glue.
- A semantic behaviour domain \mathcal{B}.
- A set \mathcal{G} of glue operators $2^{\mathcal{B}} \rightarrow \mathcal{B}$.
- How do we compare two glues $G_{1}, G_{2} \subseteq \mathcal{G}$?
- Comparison is made by flattening, i.e. directly on $\mathcal{B}: G_{1}(\mathcal{B}) \stackrel{?}{=} G_{2}(\mathcal{B})$.
- Not satisfactory: most formalisms are Turing complete.
- Goal: develop a framework to compare glue, i.e. on $(\mathcal{B}, \mathcal{G})$.

Assumptions:

- A semantic behaviour domain \mathcal{B} with a relation $\simeq \subseteq \mathcal{B} \times \mathcal{B}$
- A set \mathcal{G} of glue operators $2^{\mathcal{B}} \rightarrow \mathcal{B}$

Comparison:

- (Very strong $) \simeq$ induces a relation on \mathcal{G} :

$$
G_{1} \preccurlyeq G_{2} \stackrel{\text { def }}{\Longleftrightarrow} \forall g_{1} \in G_{1}, \exists g_{2} \in G_{2}: g_{1} \simeq g_{2} .
$$

- (Strong) First choose the behaviours, then the operator g_{2}.
- (Weak) Allow some additional coordination behaviour.

$$
\begin{aligned}
g_{1} \simeq g_{2} & \stackrel{\text { def }}{\Longleftrightarrow} \forall \mathbf{B} \subset \mathcal{B}, g_{1}(\mathbf{B}) \simeq g_{2}(\mathbf{B}) \\
G_{1} \preccurlyeq G_{2} & \stackrel{\text { def }}{\Longleftrightarrow} \forall g_{1} \in G_{1}, \exists g_{2} \in G_{2}: g_{1} \simeq g_{2} \\
& \Longleftrightarrow \forall g_{1} \in G_{1}, \exists g_{2} \in G_{2}: \forall \mathbf{B} \subset \mathcal{B}, g_{1}(\mathbf{B}) \simeq g_{2}(\mathbf{B})
\end{aligned}
$$

Strong Expressiveness Preorder

$$
G_{1} \preccurlyeq s G_{2} \stackrel{\text { def }}{\Longrightarrow} \forall g_{1} \in G_{1}, \forall \mathbf{B} \subset \mathcal{B}, \exists g_{2} \in G_{2}: g_{1}(\mathbf{B}) \simeq g_{2}(\mathbf{B})
$$

$$
/ \text { recall } G_{1} \preccurlyeq G_{2} \quad \Longleftrightarrow \quad \forall g_{1} \in G_{1}, \exists g_{2} \in G_{2}: \forall \mathbf{B} \subset \mathcal{B}, g_{1}(\mathbf{B}) \simeq g_{2}(\mathbf{B}) /
$$

$$
G_{1} \preccurlyeq W G_{2} \stackrel{\text { def }}{\Longleftrightarrow}
$$

- there exists a finite subset $\mathcal{C} \subset \mathcal{B}$ of coordination behaviours, such that
- $\forall g_{1} \in G_{1}, \forall \mathbf{B} \subset \mathcal{B}, \exists \mathbf{C} \subset \mathcal{C}, g_{2} \in G_{2}: g_{1}(\mathbf{B}) \simeq g_{2}(\mathbf{B}, \mathbf{C})$
- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues
$B=(Q, P, \rightarrow)$, where $\rightarrow \subseteq Q \times 2^{P} \times Q$

Relations:

- \sqsubseteq_{S} simulation preorder,
- \simeq_{S} simulation equivalence,
- $\sqsubseteq_{R S}$ ready simulation preorder,
- $\simeq_{R S}$ ready simulation equivalence,

$$
\begin{aligned}
& \leftrightarrows \subseteq \simeq_{R S} \subseteq \\
& \simeq_{S} \\
& \cap \\
& \emptyset \\
& \sqsubseteq_{R S} \subseteq
\end{aligned} \sqsubseteq_{S}
$$

- \leftrightarrows bisimulation.

Simulation but not Ready Simulation equivalent:

Ready Simulation equivalent but not Bisimilar:

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues

A glue operator is a set of derivation rules of the form

$$
r=\frac{\left\{q_{i} \xrightarrow{a_{i}} q_{i}^{\prime}\right\}_{i \in I} \quad\left\{q_{j} \stackrel{{ }^{b_{j}}}{\longrightarrow} \mid k \in\left[1, m_{j}\right]\right\}_{j \in J}}{q_{1} \ldots q_{n} \xrightarrow{a} \widetilde{q}_{1} \ldots \widetilde{q}_{n}}
$$

1. $a=\bigcup_{i \in I} a_{i}$.
2. For each $i \in[1, n], r$ has at most one positive premise involving the i-th argument.
3. r has at least one positive premise.
4. A label can appear either in positive or in negative premises, but not in both.

$$
g=\left\{\frac{q_{1} \stackrel{a}{\rightarrow} q_{1}^{\prime}}{q_{1} q_{2} \xrightarrow{a} q_{1}^{\prime} q_{2}}, \quad \frac{q_{1} \xrightarrow{a} q_{1}^{\prime} q_{2} \stackrel{c}{\rightarrow} q_{2}^{\prime}}{q_{1} q_{2} \xrightarrow{a c} q_{1}^{\prime} q_{2}^{\prime}}, \quad \frac{q_{1} \xrightarrow{b} q_{1}^{\prime} q_{2} \neq}{q_{1} q_{2} \xrightarrow{b} q_{1}^{\prime} q_{2}}\right\}
$$

Parallel product
$B_{1} \| B_{2}$

Application of glue
$g\left(B_{1}, B_{2}\right)$

Assumption: No redundant rules in a glue operator, i.e. $r_{1}, r_{2} \in g$, such that

$$
\operatorname{Pos}\left(r_{1}\right)=\operatorname{Pos}\left(r_{2}\right), \quad \operatorname{Neg}\left(r_{1}\right) \subseteq \operatorname{Neg}\left(r_{2}\right) .
$$

Th 1 Bisimulation, ready simulation preorder and equivalence, and simulation equivalence on glue operators coincide:

$$
\leftrightarrows=\simeq_{R S}=\simeq_{S}=\sqsubseteq_{R S}
$$

All these relations coincide with the equality of operators as sets of rules.

Very Strong Comparison too strong.

$$
\begin{aligned}
r & =\frac{\left\{q_{i} \stackrel{a_{i}}{\longrightarrow} q_{i}^{\prime}\right\}_{i \in I}\left\{q_{j} \stackrel{b_{j_{k}}}{ } \mid k \in K_{j}\right\}_{j \in J}}{q_{1} \ldots q_{n} \xrightarrow{a} \widetilde{q}_{1} \ldots \widetilde{q}_{n}} \\
C(r) & =\bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} \bigwedge_{k \in K_{j}} \neg b_{j_{k}}, \quad g \leadsto \bigvee_{r \in g} C(r) .
\end{aligned}
$$

Syntax:

$$
\begin{aligned}
f & ::=f \vee f|f \wedge t| e \\
t & ::=(t \vee t)|\neg e| e \\
e & ::=e \vee e|e \wedge e|(e)\left|a \in 2^{P}\right| 0 \mid 1,
\end{aligned}
$$

Axioms:

1. $\neg 0=1$ and $\neg 1=0$,
2. $f \wedge \neg f=0$,
3. $\neg f_{1} \wedge \neg f_{2}=\neg\left(f_{1} \vee f_{2}\right)$,
4. $\neg f_{1} \vee \neg f_{2}=\neg\left(f_{1} \wedge f_{2}\right)$.

What does not hold? Essentially $f \vee \neg f \neq 1$, i.e. $a b \vee a \neg b \neq a-a$ is only allowed alone, when b is not possible.

- Glue Expressiveness
- Labelled Transition Systems
- Structural Operational Semantics Glue
- Comparison of Classical Glues
int $_{\gamma}=\bigvee \gamma-$ an interaction model, defined by a set of interactions $\gamma \subseteq 2^{P}$. $p r_{\pi}=\bigvee_{a \in 2^{P}}\left(a \wedge \bigwedge_{a \prec a^{\prime}} \neg a^{\prime}\right)$ - a priority model π is a strict partial order on 2^{P}.

B:

$$
p r_{a \prec b}(B):
$$

Prop $1 I M$ is strongly equivalent to the set of all positive glue operators, whereas BIP is strongly equivalent to the set of all glue operators.

Prop $2 B I P$ is strongly more expressive than $I M$ w.r.t. \simeq_{S} (a fortiori $\simeq_{R S}$ and \leftrightarrows). That is $I M \preccurlyeq S B I P$ and $B I P \not \AA_{W} I M$.
$L=A \cup \bar{A} \cup\{\tau\}$ is the set of labels. C is the set of channels.

CCS: Binary synchronisation of complementary actions $a, \bar{a} \in L$:

$$
\operatorname{par}_{C C S}=\bigvee_{a \in A} \bigvee_{i, j=1}^{n} B_{i} \cdot a B_{j} \cdot \bar{a} \vee \bigvee_{a \in A} \bigvee_{i=1}^{n}\left(B_{i} \cdot a \vee B_{i} \cdot \bar{a} \vee B_{i} \cdot \tau\right)
$$

SCCS: All components must synchronise:

$$
\operatorname{par}_{S C C S}=\bigwedge_{i=1}^{n}\left(B_{i} \cdot \tau \vee \bigvee_{a \in A} B_{i} \cdot a\right)
$$

CSP: Processes communicate over a set of channels common to the system:

$$
\operatorname{par}_{C S P}=\bigvee_{c \in C^{\prime}} \bigwedge_{i=1}^{n} B_{i} . c \vee \bigvee_{c \notin C^{\prime}} \bigvee_{i=1}^{n}\left(B_{i} . \tau \vee B_{i} . c\right) .
$$

- Three preorders for comparing glue expressiveness.
- For LTS and SOS glue operators,
- classical equivalence relations coincide,
- first results for comparison of classical glues according to strong and weak expressiveness preorders.
- Pseudo-boolean encoding of glue operators.

1. Complete the diagram in the previous slide.
2. Characterisation of the strong expressiveness preorder for all SOS glues (not only positive).
3. Operators with influences (positive premises not participating in the conclusion).
4. What is a glue operator in the general case?

Labelled Transition System (LTS): $B=(Q, P, \rightarrow)$, where

- Q is the set of states,
- P is the set of ports,
- $\rightarrow \subseteq Q \times 2^{P} \times Q$ is the set of transitions.

Let $B_{1}=\left(Q_{1}, P_{1}, \rightarrow\right)$ and $B_{2}=\left(Q_{2}, P_{2}, \rightarrow\right)$ be two LTS, and let $\mathcal{R} \subseteq Q_{1} \times Q_{2}$ be a binary relation. \mathcal{R} is

1. a simulation iff, for all $q_{1} \mathcal{R} q_{2}, q_{1} \xrightarrow{a} q_{1}^{\prime}$ implies $q_{2} \xrightarrow{a} q_{2}^{\prime}$, for some $q_{2}^{\prime} \in Q_{2}$ such that $q_{1}^{\prime} \mathcal{R} q_{2}^{\prime}$.
2. a ready simulation iff it is a simulation and, for $q_{1} \mathcal{R} q_{2}, q_{1} \neq$ implies $q_{2} q$.
3. a bisimulation iff both \mathcal{R} and \mathcal{R}^{-1} are simulations.

A proof

Lemma 1 Let g_{1}, g_{2} be glue operators, and g_{1} be without redundancy. $g_{1} \sqsubseteq_{S} g_{2}$ implies that, for each rule $r_{1} \in g_{1}$, there is a rule $r_{2} \in g_{2}$ having
$\operatorname{Pos}\left(r_{2}\right)=\operatorname{Pos}\left(r_{1}\right)$ and $\operatorname{Neg}\left(r_{2}\right) \subseteq \operatorname{Neg}\left(r_{1}\right)$.
Proof - Consider the rule

$$
r_{1}=\frac{\left\{q_{i} \xrightarrow{a_{i}} q_{i}^{\prime}\right\}_{i \in I} \quad\left\{q_{j} \stackrel{{ }^{b_{j}}}{\longrightarrow} \mid k \in\left[1, m_{j}\right]\right\}_{j \in J}}{q_{1} \ldots q_{n} \xrightarrow{a} \widetilde{q_{1}} \ldots \widetilde{q_{n}}} \in g_{1},
$$

and, for $i \in[1, n], B_{i}^{1}=\left(Q_{i}, P, \rightarrow_{i}\right)$ having $Q_{i}=\left\{q^{i}\right\}$ and \rightarrow_{i} defined by

$$
\rightarrow_{i}= \begin{cases}\left\{q^{i} \xrightarrow{a} q^{i} \mid a \in 2^{P}\right\}, & \text { for } i \notin J, \\ \left\{q^{i} \xrightarrow{a} q^{i} \mid a \in 2^{P}\right\} \backslash\left\{q^{i} \xrightarrow{b_{i_{k}}} q^{i} \mid k \in\left[1, m_{i}\right]\right\}, & \text { for } i \in J .\end{cases}
$$

Both $g_{1}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right)$ and $g_{2}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right)$ have exactly one state: q^{\prime} and $q^{\prime \prime}$.
All the premises of r_{1} are satisfied in q^{\prime}. Hence $q^{\prime} \xrightarrow{a} q^{\prime}$ in $g_{1}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right)$. By simulation $g_{1} \sqsubseteq_{S} g_{2}$, we also have $g_{1}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right) \sqsubseteq_{S} g_{2}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right)$. Hence, $q^{\prime \prime} \xrightarrow{a} q^{\prime \prime}$ in $g_{2}\left(B_{1}^{1}, \ldots, B_{n}^{1}\right)$, and there exists a rule $r_{2} \in g_{2}$ enabling this transition. Thus, $\operatorname{Pos}\left(r_{2}\right)=\operatorname{Pos}\left(r_{1}\right)$ and $N e g\left(r_{2}\right) \subseteq N e g\left(r_{1}\right)$.

