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General Program Structure

• a computer program can combine various constructions such as:

– arithmetic,

– array manipulation,

– pointer manipulation,

– recursion,

– parallel execution, etc.

• verification of each of the above requires different approaches (which can be

combined in the ideal case)

• we focus on programs with pointers

– bugs in pointer manipulation can be very tricky when using low level

programming languages (C/C++)

– yet the pointers allow construction of useful data structures (list, trees, etc.)
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Programs with Pointers

• we restrict to the following statements (x, y are pointer variables, next(i)

denotes i-th selector):

– new(x) (heap allocation)

– x := null (nil assignement)

– x := y (simple assignement)

– x := y.next(i) (assignement with dereference of source)

– x.next(i) := y (assignement with dereference of destination)

– if/while (x = y) (conditional branching)

– delete(x) (heap deallocation – optional)

• no C-style pointer arithmetic (p++, *(p+3))
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Programs with Pointers – Verification

• safety

– a pointer variable has to point to some memory cell when dereferenced, i.e. it

has to be assigned a valid address before

– a memory cell released by calling delete is never used in the future (and also

never released again)

– user specified assertions

• termination (liveness)

– a program terminates for any input
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Related Work

• 3-valued predicate logic with transitive closure

– [Sagiv, Reps, Wilhelm ’96]

• separation logic

– [Reynolds ’02]

• regular model checking

– [Kesten, Maler, Marcus, Pnueli, Shahar ’97]

• many other approaches exist
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3-valued Predicate Logic with Transitive Closure

• at a given program point, a single pointer variable can point to a (possibly

infinite) set of structures (in all possible executions of a program)

• the aim of the analysis is to create a finite representation of the heap

• it does so by using shape graphs, which consist of an abstract state, an abstract

heap, and a sharing information for abstract locations
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Separation Logic

• the heap often consists of indipendent parts which are not interconnected or

which are interconnected in a bounded way

• separation logic extends Hoare logic in order to reason about different parts of

the heap locally

– heap configurations are represented by formulae in separation logic (data

structures are described using recursive predicates)

– an execution of the program statements is replaced by a Hoare-style

reasoning and a generating of invariants
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Seperation Logic – Example

• list segment predicate:

ls(E, F ) ⇐⇒ E 6= F ∧ (E 7→ F ∨ (∃x′.E 7→ x′ ∗ ls(x′, F )))

• list reversal (u points to a singly-linked list at the beginning):

1: while (u 6= null) do {ls(u,⊥)}

2: w := u.next;

3: u.next := v;

4: v := u; u := w;

5: od {ls(u,⊥) ∗ ls(v,⊥)} (inv.)

6: {ls(v,⊥)}

• things to verify:

– no null pointer dereference occurs,

– the program eventually terminates,

– v contains the reversal of u at the end

9



Regular Model Checking

• heap configurations are represented by finite automata (over words or trees)

• program statements are interpreted over these automata (usually using

transducers)

• it is possible to use CEGAR approach

• some modifications (ARTMC) allow verification of more complex structures than

trees by using tree automata only

– [Bouajjani, Habermehl, Rogalewicz, Vojnar ’06]

• it is possible to verify:

– operations on doubly linked lists,

– operations on different kind of trees,

– Deutsch-Schorr-Waite algorithm, etc.
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A New Method of Verification based on Tree Automata

• why?

– separation logic: often requires the specification of recursive predicates (e.g.

for a singly-linked list) and invariant generation rules over these predicates;

only a limited ability to handle something more complex than lists

– regular model checking: the invariant generation is automated, but the heap

is represented by a single automaton; doesn’t scale well on very complex

structures

• we want to combine advantages of both methods

• we want to handle more general structures than lists or trees

• we want to avoid using transducers for symbolic execution of statements

(overhead)
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Heap Representation

• the heap can be viewed as a directed graph, where nodes represent memory cells

and edges represent the selectors

• an example (⊥ denotes null value, x, y are pointer variables, memory cells

contain selectors 1, 2)
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Tree-based Heap Decomposition and Cut-points

• the heap is a general directed graph, but we have tree automata only

– graph automata exist, but operations are too hard

• the heap can be decomposed into trees by using cut-points, which are nodes

pointed to by a variable or nodes that contain more than one incoming edge (are

pointed to by more than one selector)

• example (x, y point to c1 and c2 respectively):
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Representing Memory Configurations by Tree Automata

• an accepting run (bottom-up) of the automaton describes a part of one heap

configuration (memory cells and content of their selectors); the complete

configuration is obtained by combining runs of several such automata

• each cut-point can appear at most once (as an accepting state) in a run (it

represents only a single memory cell)

• the automaton contains leaf rules for ⊥ and for each cut-point

• an example (a singly-linked list):

1(q1) → c′
1

1(q1) → q1

1(c1) → q1

(leaf rule: a → c1)

1 11
. . .x

1
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Introducing hierarchy

• what about a doubly-linked list?

⊥ ⊥

1

2

1 1
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. . .x

• we get an unbounded number of cut-points in the tree decomposition!
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Introducing Hierarchy

• try to hide some of the cut-points in the hierarchically structured automata

• in the case of doubly-linked lists, create a box consisting of 2 automata –

DLL(out : c1, in : c2):

A1: 1(c2) → c′
1

A2: 2(c1) → c′
2

1
c2

2

c1

• use this box as a symbol on a higher level:

〈DLL, 2〉(q1,⊥) → c′
1

DLL(q1) → q1

1(⊥) → q1
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Introducing Hierarchy – Example

• consider the doubly-linked list:

⊥

2

1 1 1

12

2 2

⊥ x

• the run of the corresponding automaton looks as follows (without leaf rules):

⊥
1

−→ q1

DLL
−→ q1

DLL
−→ q1

DLL
−→ c′

1

⊥
2

−→
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Main Challenges

• language inclusion (⊆)

– we don’t know how to complement hierarchical tree automata but we know

how to test inclusion on tree automata without complementing [Bouajjani,

Habermehl, Holik, Touili, Vojnar ’08]

– we don’t know how to do the inclusion in general (yet)

– there are some safe approximations though (top-level inclusion checking)

• the other automata operations (∪, ∩)

• invariant generation
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Low Level Symbolic Representation

• automata tend to grow too much to fit in a memory

• there are ways how to store them efficiently using symbolic representation

– BDDs,

– sparse matrices, . . .

• already used in ARTMC (MONA)

• current implementations usually targets deterministic automata only
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Future Directions

• an ability to handle dynamic structures containing data

• an automated learning of the hierarchy

• function calls

– heap summaries

– the recursion

• multi-threaded programs

– an ability to lock each node separately

• a tool that scales
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