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General Program Structure

e a computer program can combine various constructions such as:
— arithmetic,
— array manipulation,
— pointer manipulation,
— recursion,
— parallel execution, etc.
e verification of each of the above requires different approaches (which can be
combined in the ideal case)
e we focus on programs with pointers

— bugs in pointer manipulation can be very tricky when using low level
programming languages (C/C++)

— yet the pointers allow construction of useful data structures (list, trees, etc.)



Programs with Pointers

e we restrict to the following statements (x, y are pointer variables, next (i)
denotes i-th selector):

— new(x) (heap allocation)

— x := null (nil assignement)

— x := y (simple assignement)

— x := y.next(i) (assignement with dereference of source)

— x.next (i) := y (assignement with dereference of destination)

— if/while (x = y) (conditional branching)

— delete(x) (heap deallocation — optional)

e no C-style pointer arithmetic (p++, *(p+3))



Programs with Pointers — Verification

e safety

— a pointer variable has to point to some memory cell when dereferenced, i.e. it
has to be assigned a valid address before

— a memory cell released by calling delete is never used in the future (and also
never released again)

— user specified assertions

e termination (liveness)

— a program terminates for any input



Related Work

e 3-valued predicate logic with transitive closure

— [Sagiv, Reps, Wilhelm "96]

e separation logic

— [Reynolds '02]

e regular model checking

— [Kesten, Maler, Marcus, Pnueli, Shahar '97]

e many other approaches exist



3-valued Predicate Logic with Transitive Closure

e at a given program point, a single pointer variable can point to a (possibly
infinite) set of structures (in all possible executions of a program)

e the aim of the analysis is to create a finite representation of the heap

e it does so by using shape graphs, which consist of an abstract state, an abstract
heap, and a sharing information for abstract locations



Separation Logic

e the heap often consists of indipendent parts which are not interconnected or
which are interconnected in a bounded way

e separation logic extends Hoare logic in order to reason about different parts of
the heap locally

— heap configurations are represented by formulae in separation logic (data
structures are described using recursive predicates)

— an execution of the program statements is replaced by a Hoare-style
reasoning and a generating of invariants



Seperation Logic — Example

e list segment predicate:
Is(E,F)<—= FE#FN(E— FV (32" Fw— ' xls(a', F)))

e list reversal (u points to a singly-linked list at the beginning):

1: while (u # null) do  {is(u, L)}

2: W = u.next;

3: u.next := v;

4. Vi=U U= W,

5: od {ls(u, L) *1ls(v, L)} (inv.)
6: {ls(v, 1)}

e things to verify:
— no null pointer dereference occurs,
— the program eventually terminates,

— v contains the reversal of u at the end



Regular Model Checking

e heap configurations are represented by finite automata (over words or trees)

e program statements are interpreted over these automata (usually using

transducers)
e it is possible to use CEGAR approach

e some modifications (ARTMC) allow verification of more complex structures than

trees by using tree automata only

— [Bouajjani, Habermehl, Rogalewicz, Vojnar '06]

e it is possible to verify:
— operations on doubly linked lists,
— operations on different kind of trees,

— Deutsch-Schorr-Waite algorithm, etc.
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A New Method of Verification based on Tree Automata

e why?

— separation logic: often requires the specification of recursive predicates (e.g.
for a singly-linked list) and invariant generation rules over these predicates;
only a limited ability to handle something more complex than lists

— regular model checking: the invariant generation is automated, but the heap
is represented by a single automaton; doesn’t scale well on very complex
structures

e we want to combine advantages of both methods
e we want to handle more general structures than lists or trees

e we want to avoid using transducers for symbolic execution of statements
(overhead)
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Heap Representation

e the heap can be viewed as a directed graph, where nodes represent memory cells
and edges represent the selectors

e an example (L denotes null value, x, y are pointer variables, memory cells
contain selectors 1, 2)
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Tree-based Heap Decomposition and Cut-points

e the heap is a general directed graph, but we have tree automata only

— graph automata exist, but operations are too hard

e the heap can be decomposed into trees by using cut-points, which are nodes

pointed to by a variable or nodes that contain more than one incoming edge (are
pointed to by more than one selector)

e example (x, y point to ¢; and co respectively):
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Representing Memory Configurations by Tree Automata

e an accepting run (bottom-up) of the automaton describes a part of one heap
configuration (memory cells and content of their selectors); the complete
configuration is obtained by combining runs of several such automata

e cach cut-point can appear at most once (as an accepting state) in a run (it
represents only a single memory cell)

e the automaton contains leaf rules for 1 and for each cut-point

e an example (a singly-linked list):
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(leaf rule: a — ¢1)
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Introducing hierarchy

e what about a doubly-linked list?
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e we get an unbounded number of cut-points in the tree decomposition!
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Introducing Hierarchy

e try to hide some of the cut-points in the hierarchically structured automata

e in the case of doubly-linked lists, create a box consisting of 2 automata —
DLL(out : ¢1,in : c3):

A 1(eq) — @/1\\@
A2: 2(61) — 6/2 ‘\2/
e use this box as a symbol on a higher level:

<DLL7 2>(Q17 J—) — Cll
DLL(q1) — @
(L) — @
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Introducing Hierarchy — Example

e consider the doubly-linked list:

e the run of the corresponding automaton looks as follows (without leaf rules):

1 DLL DLL DLL ,
L — ¢ — q1 — q1 — Cq
TN
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Main Challenges

e language inclusion (C)
— we don’'t know how to complement hierarchical tree automata but we know
how to test inclusion on tree automata without complementing [Bouajjani,
Habermehl, Holik, Touili, Vojnar '08]

— we don't know how to do the inclusion in general (yet)

— there are some safe approximations though (top-level inclusion checking)
e the other automata operations (U, N)

e invariant generation
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Low Level Symbolic Representation

e automata tend to grow too much to fit in a memory

e there are ways how to store them efficiently using symbolic representation
— BDD:s,

— sparse matrices, ...
e already used in ARTMC (MONA)

e current implementations usually targets deterministic automata only
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Future Directions

e an ability to handle dynamic structures containing data
e an automated learning of the hierarchy

e function calls
— heap summaries

— the recursion

e multi-threaded programs

— an ability to lock each node separately

e a tool that scales
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Thank You
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