
Extending L2CA for the verification

of multi-threaded programs

Polyvios Pratikakis

Radu Iosif

Extending L2CA for the verification of multi-threaded programs – p. 1/17

Multi-threaded programming

Multi-core CPUs are increasingly available

Demand for parallel software increasing

Threads and shared memory is the dominant programming
model

Complex to program

Easy to make mistakes

Difficult to debug

Increased need for automatic verification

Extending L2CA for the verification of multi-threaded programs – p. 2/17

L2CA: verification of list-programs

Analyze simple programs

Precise analysis of the heap

Summarize singly-linked lists with n elements: finite heap
state-space

Compile to counter-automata

Check memory safety

Sound, complete

Extending L2CA for the verification of multi-threaded programs – p. 3/17

L2CA in a nutshell
Simple abstract language:

Variables have only integer and list types

Statements are assignments, loops, conditionals

Forward data flow analysis

Heap is list segments

Computes a set of heaps per program point

Automaton states are (heap, program-point) pairs

Abstract counters used to summarize the length of lists in the
heap

Extending L2CA for the verification of multi-threaded programs – p. 4/17

L2CA: an example

count(struct list ∗i) {

int a;

struct list ∗j ;

j = i ;

a = 0;

while (j != NULL) {

a++;

j = j→next;

}

}

Extending L2CA for the verification of multi-threaded programs – p. 5/17

Formalising sequential L2CA

Locations ρ ∈ R

Values v ::= n | ρ | true | false

Expressions e ::= x | let x = e in e | if e then e else e | e := e
| while e do e | e;e | null | new | e.next

| e = e | e ≤ e | ¬e | e∧ e | e∨ e | e± e
Types τ ::= int | list | bool
Heaps H ::= · | H,(ρ,ρ) | H,(ρ,⊥)

Counters c ∈ C

Abstract Heaps H̄ ::= · | H̄,(ρ,c,ρ) | H̄,(ρ,c,⊥)

Execution state s ::= 〈H,e〉

Automaton state ¯s ::= 〈H̄,e〉

Extending L2CA for the verification of multi-threaded programs – p. 6/17

Operational semantics

Defined concrete semantics, e.g.:

ASSIGN-NULL
ρ ∈ dom(H)

〈H,ρ := null〉 −→ 〈H[ρ 7→ ⊥],null〉

State space is infinite

Use abstract heaps to summarize:

Abstract heaps represent sets of concrete heaps

Abstract heap space is finite, for finite programs

Possible to explore exhaustively

Extending L2CA for the verification of multi-threaded programs – p. 7/17

Create the automaton
For every concrete operational semantics transition, define
corresponding abstract-state transition(s):

H̄(ρ) = (c,α)

〈H̄,ρ := null〉
c=0
−→ 〈H̄[ρ 7→ (c,⊥)],null〉

H̄(ρ) = (c,α)

〈H̄,ρ := null〉
c>0
−→ 〈Memory leak 〉

Perform fixpoint analysis on program code to discover all
states and transitions of the automaton

Extending L2CA for the verification of multi-threaded programs – p. 8/17

L2CA status
Limitations

Works only for a simple, abstract, imperative language

Intra-procedural, no support for function calls

Sinlge-threaded, sequential code

Goal: extensions

Extend to full C

Support function calls, intra-procedural analysis

Analyze multi-threaded programs with locks

Extending L2CA for the verification of multi-threaded programs – p. 9/17

Extending to C

Rewrote in OCaml using CIL, accepts subset of C

Can only handle simple C programs with lists: discovers
recursive types with one recursive field, ignores the rest

Currently rejects all type-unsafety in input C programs

Extending L2CA for the verification of multi-threaded programs – p. 10/17

Adding parallelism

Constant number of parallel threads

Common initial heap, global variables

Lock types, lock/unlock statements

Lock state in the heap: every heap cell can be owned by a
thread

Adjust operational semantics for non-deterministic thread
interleavings:

Any thread can take a step, unless it is waiting for a lock

Create an automaton state for every possible heap, at every
reachable combination of thread program points

Extending L2CA for the verification of multi-threaded programs – p. 11/17

Parallelism, formally

Extensions

Expressions e ::= . . . | lock e | unlock e
Heaps H ::= · | H,(ρ, tid,ρ) | H,(ρ, tid,⊥)

Abstract Heaps H̄ ::= · | H̄,(ρ, tid,c,ρ) | H̄,(ρ, tid,c,⊥)

Execution state s ::= 〈H,~e〉

Automaton state ¯s ::= 〈H̄,~e〉

Operational semantics: each thread can take a step

〈H,ei〉 −→
i 〈H ′,e′i〉

〈H,~e〉 −→ 〈H ′,~e[e′i/ei]〉

State Explosion!

Extending L2CA for the verification of multi-threaded programs – p. 12/17

Solution attempts

Partial order reduction:

Not all interleavings give different behaviors

Some interleavings are equivalent to others (e.g. access
to thread-local data)

Idea: Merge interleavings that are equivalent

Effect: less interleavings to worry about, less states

Threads execute bigger "chunks" of code between
context-switches

Context limit

Idea: limit the number of context switches allowed per
thread

Pros: bigger pieces of serial code, less states

Cons: Might mask some errors that manifestate with
more context-switches (sacrifices soundness)

Extending L2CA for the verification of multi-threaded programs – p. 13/17

Adding function support

Simple algorithm:

1. At every function call, partition the heap (frame rule)
Only keep what is relevant (reachable from globals
and parameters)

2. Analyze function body using the relevant part of the heap

3. Memoize the caller heap, and exit states of the
automaton of the called function

4. At subsequent calls, reuse function automaton if heap
matches, otherwise re-analyze using new "relevant"
heap part

Drawbacks:

Does not handle recursion

Worst-case time is equivalent to simply inlining

Extending L2CA for the verification of multi-threaded programs – p. 14/17

Function example

void append(struct list ∗l , struct list ∗l2) {

while (l→next != NULL) l = l→next;

l→next = l2;

}

main() {

struct list ∗ c1 = malloc();

struct list ∗ c2 = malloc();

struct list ∗ c3 = malloc();

append(c1, c2);

append(c1, c3);

}

Extending L2CA for the verification of multi-threaded programs – p. 15/17

Open problem: recursive functions

Current insights

Tail recursion is easy, equivalent to simple loops

Non-tail recursion is equivalent to stack-counter automata in
the general case: We cannot easily answer reachability
questions

More general solution: summarize and overapproximate

Loses completeness, might produce false warnings

Extending L2CA for the verification of multi-threaded programs – p. 16/17

Summary

L2CA analyzes programs that manipulate lists, using counter
automata

Adding parallelism causes state explosion

Reduced somewhat by partial order reduction

Context bound analysis gives further improvement, but
loses soundness

Adding function support

Enables inter-procedural analysis, bigger programs

Summary-based analysis of functions scales better

Does not handle recursion without loss of completeness

Is expensive, amounts to inlining at worst case

Extending L2CA for the verification of multi-threaded programs – p. 17/17

	Multi-threaded programming
	L2CA: verification of list-programs
	L2CA in a nutshell
	L2CA: an example
	Formalising sequential L2CA
	Operational semantics
	Create the automaton
	L2CA status
	Extending to C
	Adding parallelism
	Parallelism, formally
	Solution attempts
	Adding function support
	Function example
	Open problem: recursive functions
	Summary

