
Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Use of the LLVM framework for the MSIL code
generation

Artur PIETREK
artur.pietrek@imag.fr

VERIMAG
Kalray (Montbonnot)

DCS seminar
March 27, 2009

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

1 PhD thesis

2 MSIL

3 Motivation

4 Introduction to LLVM

5 LLVM MSIL code generator

6 Plans for the future

7 Reference

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

PhD thesis

The MSIL code generator is a part of the thesis:

CLI JIT compilation for media processing applications

advisors:

Jean-Claude Fernandez, VERIMAG
Benôıt Dupont de Dinechin, Kalray

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

What is MSIL?

Microsoft Intermediate Language also known as Common
Intermediate Language (CIL)

the lowest-level part of the CLI (Common Language
Infrastructure)

object-oriented assembly language

platform independent assembly language

stack-based program representation

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Why MSIL?

along with LLVM ”bit-code”, the only program representation
for Just-In-Time compilation of C programs

MSIL is mature and has become ECMA standard as a part of
CLI (Common Language Infrastructure)

several different Virtual Machines as reference (MS .NET, MS
Rotor, Mono, DotGNU)

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Motivation

There are few solutions available for generation of the MSIL
(Microsoft Intermediate Language) code from C language:

LCC.NET

Princeton LCC + MSIL backend contributed by Microsoft

GCC4NET

Contributed by STMicroelectronics
currently maintained by IRISA (E.Rohou)

LLVM+MSIL

LLVM head (Chris Lattner) agreed that we took ownership of the
MSIL code generator

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Motivation

Generated intermediate code could be Just-In-Time compiled using
one of the implementations of .NET CLR (Common Language
Runtime).
These solutions don’t provide mechanisms for runtime and offline
optimization of programs written in C.

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Motivation

Microsoft .NET

Windows

Microsoft Rotor

Windows (XP SP2), FreeBSD, Mac OS X

DotGnu

GNU/Linux, *BSD, Cygwin/Mingw32, Mac OS X, Solaris, AIX

Mono

GNU/Linux, *BSD, Mac OS X, iPhone OS, Solaris, Windows,
Nintendo Wii, Sony PlayStation 3

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Motivation

As I am interested in the MSIL code generation and Just-In-Time
compilation, my goal is to develop a Just-In-Time compiler that
will allow for:

JIT compilation programs originally written in C

life-long optimization of those programs

program specialization based on static and dynamic
profiles

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

What is LLVM?

LLVM stands for

Low Level Virtual Machine

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

What is LLVM?

A compilation strategy.

lifelong analysis and transformation of a program:

compile-time
link-time
install-time
run-time
idle-time

use aggressive interprocedural optimizations

gather and exploit end-user profile information

tune the application to the user‘s hardware

generate the native code off-line and run-time

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

What is LLVM?

A virtual instruction set.

RISC-like instructions

low-level object representation

type information and dataflow informations about operands

exceptions handling

source language independent representation

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

What is LLVM?

A compiler infrastructure.

implementation of languages and compilation strategy

optimization and analysis framework

static backends for X86, X86-64, PowerPC 32/64, ARM,
Thumb, IA-64, Alpha, SPARC, MIPS and CellSPU
architectures

Just-In-Time compiler for X86, X86-64, PowerPC 32/64

portable code generator: C, C++, MSIL

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Why LLVM?

among others, has a frontend for C language
has an aggressive optimizer

scalar
interprocedural
profile-driven
simple loop optimizations

supports a life-long optimization model
link-time
install-time
run-time
off-line

allows for relatively easy implementation
of transformations (optimizations) and targets

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Why LLVM?

LLVM is under active development

LLVM is freely available under BSD-like license

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

LLVM MSIL code generator

one of the existing LLVM’s code generators

current state is experimental rather than fully functional

it is not under developement anymore

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Main project goals

use of C language as front-end

generated code has to work with Mono project and .NET

generated code should be fully ECMA standard compliant

implementation of LLVM’s tests for validation of the
generated code

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Discovered problems

lack of initialization of global variables

calling external vararg functions doesn’t work with Mono

incorrect stack management after calling functions

lack of implementation of LLVM’s intrinsics

lot of unused local variables

switch() should be implemented as MSIL’s equivalent rather
than set of labels and branches

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Current progress

Fixed

fixed global variables initialization

implemented solution for external vararg functions and Mono
project

Work in progress

writing LLVM’s tests for verification of generated code

writing LLVM’s transformations for remaining problems

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Current progress

Fixed

fixed global variables initialization

implemented solution for external vararg functions and Mono
project

Work in progress

writing LLVM’s tests for verification of generated code

writing LLVM’s transformations for remaining problems

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

Plans for the future

developement of MSIL code interpreter

developement of MSIL code JIT compiler

run-time optimization for developed JIT compiler

program specialization based on static and dynamic
profiles

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation



Outline
PhD thesis

MSIL
Motivation

Introduction to LLVM
LLVM MSIL code generator

Plans for the future
Reference

John Gough.
Compiling for the .NET Common Language Runtime (CLR).
Prentice Hall PTR, Upper Saddle River, New Jersey, 2002.

Chris Lattner.
LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, Dec 2002.
See http://llvm.cs.uiuc.edu.

Chris Lattner and Vikram Adve.
LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation.
In Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

Serge Lidin.
Inside Microsoft .NET IL Assembler.
Microsoft Press, Redmond, Washington, 2002.

Artur PIETREK artur.pietrek@imag.fr Use of the LLVM framework for the MSIL code generation


	Outline
	PhD thesis
	MSIL
	Motivation
	Introduction to LLVM
	LLVM MSIL code generator
	Plans for the future
	Reference

