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e Joint work with luliana Bacivarov, Wolfgang Haid, Kai Matdhieu Gallien

Huang and Lothar Thiele from ETHZ-TIK Introduction

e DOL is a specification framework for dataflow
embedded systems:

e Specifications for the Application, Hardware and
Mapping
e Behavior of the Application is C/C++ code

e Translation of DOL Application Specification without
taking into account the hardware

e Automatic translation of DOL C/C++ behavior code to
BIP behavior model

e Translation based on a model of C/C++ code

o A model of the software independently of the platform
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e A specification for the application

Quick Summary of DOL

e 3 basic entities: process, software channel and
connection

o All processes have the same organisation: an init
procedure then a continuous loop of the fire procedure

e The behavior of procedures init and fire is described
by C language with some added constraints:

e There is some special functions: DOL_write and
DOL_read for the data transfers



Example of DOL process

iterated structure

ConSumer

- —
D> input port
— sw chammel — comnection
Process Model
1: procedure INIT(DOLProcess p) initialization
2 initialize local data structures
3: end procedure
4: procedure FIRE(DOLProcess p) execution

5: DOL_read(INPUT, size, buf)
6: manipulate
7 DOL_write(OUTPUTT, size, buf)

8: end procedure

blocking read

blocking write
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o A specification of hardware architecture

e Includes all processors, memories, buses and possible
connections between buses and memories

Quick Summary of DOL

e Each hardware element has a type corresponding to a
real hardware element

e Hardware elements can be parameterized

e A specification of the mapping of an application on the
hardware architecture

e Includes the mapping of processes to processors and of
software channels to hardware channels

e Includes schedules for processors and buses
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DOL Workflow

~ DOL ~
application functional architecture
specification simulation specification
mapping « N performance
opimization  ~_ evaluation
[ i d J
vYv
software simulation
refinement framework
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e From the results of:

Quick Summary of DOL

e A purely functional simulation: does not take into
account the hardware architecture

e An instruction accurate simulation: takes into account
the hardware architecture

e From the performance analysis, an optimization of the
mapping is done with genetic algorithms
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Application ::= (Process)” (SWChannel)* (Connection)™

Model of DOL Application
Specification

Process ::= (ProclnPort + ProcOutPort)™ Behavior
SWChannel ::= Size RecvPort SendPort

Connection ::= (ProcOutPort RecvPort) + (SendPort ProclnPort)
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Summary of the C Code Model

Behavior ::= procedure procedure
procedure ::= (variable_declaration)* statement_group
statement__group ::= (for + if + switch + DOL_ read+
DOL__write + simple_statement +

statement_group)Jr

f ::= condition statement_group

statement_group}

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Model of DOL Application
Specification

11 /27



Summary of the C Code Model e
Specification to
BIP

Matthieu Gallien

for__statement_group ::= (simp/e_statement+

statement_group) *

Model of DOL Application
Specification

for ::= for_statement_group condition
for__statement__group

statement__group

switch ::= variable (case)™’ {default}

case ::= value statement__group
default ::= default statement_group
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Restriction of C/C++ Code Accepted in DOL DOL Applcaton

Specification to

Behavior BIP
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All variable declarations should be at the beginning of
init and fire procedures

Model of DOL Application
Specification

Only one return by procedure

No goto

All DOL_read, DOL_write, DOL_detach in the init and
fire procedure: not in external functions called in those
procedure
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Example of Translation of DOL software channel

SWChannel ::= Size RecvPort SendPort

DOL

RecvPort
>

size

SendPort
>

RecvPort

BIP

RecvPort

SendPort

(O

size

(O

SendPort
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Connectionpp; ::= output input

Connectiongp ::= connector(output, input)

Model of DOL Application
Specification

e For each connection corresponds one BIP connector

e |t will transfer the size and the address of the data to
be transfered:;

e It will also synchronise the two components during the
copy of the data.
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For

for ::= for__statement_group condition

statement__group for_statement__group

startFor

@ for_statement_group

statement_group

startLoop

not condition

endFor
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Translation of

SWItCh DOL Application
Specification to
BIP
Matthieu Gallien
switch ::= variable.(case) ™. {default}
case ::= value.statement__group

default ::= default.statement__group

1 BIP Models for C Code
case Elements

variable == vall O

variable == val2

startSwitch endSwitch

variable == val3

variable == valn
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if .::= condition statement_group [statement_group

startlf . testlf
compute(condition) BIP Models for C Code
Elements
7/ \,
/ \
/ \
/ \
/ \
1 \
! \
1 \
1 1
: ‘.
condition | I not condition
statement_group | | statement_group
1 I
1 ]
\ 1
\ 1
1 1
\\ Il
\ endlIf /
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DOL_write ::= ProcOutPort Size Address

BIP Models for C Code
Elements

start startWrite endWrite

: compute(Size, Address) : ProcOutPort :
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start end

: executeCode :
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Compiler Architecture

DOL Specification
(XML files)

BIP Model

DOL Specification
(source code files)

AST

>

Intermediate Model

Model Transformations
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@ Transform code that is not conformant to the
restrictions we put on C code into conformant code

® Generate code for initializing variables

Implementation

©® Replace all DOL specificities into something equivalent
but with no dependencies to DOL (access to internal
data of DOL implementation, ...)



Compiler Optimisation

@ Collapsing code tree without DOL special functions

® Merging sequential code without DOL special functions

© Transforming for loops into simpler while loops if
possible (i.e. does not contain continue statements)
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Implementation
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Complete Filter Example

portOut_write

Translation of
DOL Application
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Producer @——@ S\W CChannel SWChannel
input
output output
output portA_read portD_write
SWChannel input Examples
portin_read portC_write portB_read
Consumer
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Filter Example: Producer Process

int producer_fire(DOLProcess *p)
{

int index;
srand(0); //initialize random number generator

//generate input samples and display them
[printf ("producer: samples = { ");

ffor (index = 0; index < 10; index++) {
if (index < 9) {
printf ("%+3.1f, ", p->local->sample[index]);
{
printf("%+3.1f }\n", p->local->sample[index]);

i

//write samples t:

portOut_write

p->local->sample[index] = (float) getRandomNumber(-9, 9); |— |

else | —

for (findex = 0
printt ("/8s:

P
] index < 10; w
Wr]te sample[.02d] 6.4f\n"
DOL_write((void#)PORT_OUT, &(p >local-: >samp1e[1ndex]),
sizeof (float), p);

¥

DOL_detach(p) ;
return -1;

portOut_write

executeCode

not condition
(index < 10)

condition (index < 10)
executeCode

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Examples
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Trace of Filter Example

producer.

producar:

producer.

producar:

producer:

producer:

producer:

producer:

producer:

producer:

producer:

censuner:

SystenC 2.2.0 --- Nov 3 2008 14:53:36
Copyright [c] 1996-2006 by all Contributors
ALL RIGHTS RESERVED

samples = { -7.0, +6.0, -6.0, -6.0, +1.0, -1

Write samplel00]: -7.0000

Write sample[01]: +6.0000

Write samplel02]: -6.0000
Read sample[ 00]

Write samplel03]: -6.0000
Read samplel 011

Write sample(04]: +1.0009
Read sampl el 02]

Write samplel0s]: -1.0009
Read samplel 03]

Write sample(06]: +1.0009
Read samplel 04]

Write samplel07]: +2.0000
Read sampl el 05]

Write sample(08]: -7.0000
Read sampl <[ 06]

Write sample(08]: -2.0000
Read sampl e[ 07]
Read sample( 08]
Read sampl e[ 09]

o,
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41
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000

5000

7500

3750

1875

5938

+2.0,

7.0,

-2.0 }

producer
producer
producer
producer
consuner
producar
producar
producer
eonsuner
producar
eonsuner
producer
producer
producer
eonsuner

* BIP Engine (Version 1.0)
" Verinag,
*wwn-verinag. imag. f r/~asyne /BT

France

P/bip. html)*

sanples = { 7.0,
Write samplel00]
Write sanplel0l]
Write samplel02]
Write samplel03]
Write samplel04]
Write sanplel05]
Write samplel0s]
Write sanplel07]

Write sample(08]

Write sample(0s]

+6,
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1
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000

Read

Read

Read

0, +1.0, -1.

sanplel00]:
sanplelo1]
sanplel02]:
sanplel 03]
sanplel04]
sanplel05]:
sanplel06]
sanple[07]

sanplelo8]:
sanplel05]
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Conclusion and Future Work e
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Matthieu Gallien

e Fully automatic translation of 7 DOL examples

e Produces a BIP model that is usable for model
transformations

e Need to support more complex examples like MPEG
decoder Conclusion

e We want to implement model transformations in order
to apply hardware constraints to the model of the
software
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