Translation of DOL Application
Specification to BIP

Matthieu Gallien

VERIMAG

March 27, 2009

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

= Translation of
I ntrOd UCtlon DOL Application
Specification to
BIP

e Joint work with luliana Bacivarov, Wolfgang Haid, Kai Matdhieu Gallien

Huang and Lothar Thiele from ETHZ-TIK Introduction

e DOL is a specification framework for dataflow
embedded systems:

e Specifications for the Application, Hardware and
Mapping
e Behavior of the Application is C/C++ code

e Translation of DOL Application Specification without
taking into account the hardware

e Automatic translation of DOL C/C++ behavior code to
BIP behavior model

e Translation based on a model of C/C++ code

o A model of the software independently of the platform

Translation of

O Utl i ne DOL Application

Specification to
BIP

Matthieu Gallien

Introduction

@ Translating a DOL Application to a BIP Model
Quick Summary of DOL
Model of DOL Application Specification
BIP Models for C Code Elements
Implementation

@® Examples

© Conclusion

DOL is a Specification Framework for Data Flow oo: amiesen

Specification to

Embedded Systems BiP

Matthieu Gallien

e A specification for the application

Quick Summary of DOL

e 3 basic entities: process, software channel and
connection

o All processes have the same organisation: an init
procedure then a continuous loop of the fire procedure

e The behavior of procedures init and fire is described
by C language with some added constraints:

e There is some special functions: DOL_write and
DOL_read for the data transfers

Example of DOL process

iterated structure

ConSumer

- —
D> input port
— sw chammel — comnection
Process Model
1: procedure INIT(DOLProcess p) initialization
2 initialize local data structures
3: end procedure
4: procedure FIRE(DOLProcess p) execution

5: DOL_read(INPUT, size, buf)
6: manipulate
7 DOL_write(OUTPUTT, size, buf)

8: end procedure

blocking read

blocking write

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Quick Summary of DOL

of DOL Application

BIP Mod
Elements

Implementation

DOL is a Specification Framework for Data Flow oo: amiesen

Specification to

Embedded Systems BiP

Matthieu Gallien

o A specification of hardware architecture

e Includes all processors, memories, buses and possible
connections between buses and memories

Quick Summary of DOL

e Each hardware element has a type corresponding to a
real hardware element

e Hardware elements can be parameterized

e A specification of the mapping of an application on the
hardware architecture

e Includes the mapping of processes to processors and of
software channels to hardware channels

e Includes schedules for processors and buses

6 /27

Translation of

Example of DOL Hardware Architecture DOL Applcation

Specification to
BIP

Matthieu Gallien

processorA memA fifolink processorB
@ IDIPQ QP
| I
—HB—
systermbus

Q enory O pathnode — comnection

DOL Workflow

~ DOL ~
application functional architecture
specification simulation specification
mapping « N performance
opimization ~_ evaluation
[i d J
vYv
software simulation
refinement framework

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Quick Summary of DOL

DOL Application

Implementation

Translation of

DOL can Optimize the Load of Hardware DOL Applcation
Specification to
Architecture

BIP

Matthieu Gallien

e From the results of:

Quick Summary of DOL

e A purely functional simulation: does not take into
account the hardware architecture

e An instruction accurate simulation: takes into account
the hardware architecture

e From the performance analysis, an optimization of the
mapping is done with genetic algorithms

Translation of

A DOL Application Specification DOL Application

Specification to
BIP

Matthieu Gallien

Application ::= (Process)” (SWChannel)* (Connection)™

Model of DOL Application
Specification

Process ::= (ProclnPort + ProcOutPort)™ Behavior
SWChannel ::= Size RecvPort SendPort

Connection ::= (ProcOutPort RecvPort) + (SendPort ProclnPort)

10/27

Summary of the C Code Model

Behavior ::= procedure procedure
procedure ::= (variable_declaration)* statement_group
statement__group ::= (for + if + switch + DOL_ read+
DOL__write + simple_statement +

statement_group)Jr

f ::= condition statement_group

statement_group}

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Model of DOL Application
Specification

11 /27

Summary of the C Code Model e
Specification to
BIP

Matthieu Gallien

for__statement_group ::= (simp/e_statement+

statement_group) *

Model of DOL Application
Specification

for ::= for_statement_group condition
for__statement__group

statement__group

switch ::= variable (case)™’ {default}

case ::= value statement__group
default ::= default statement_group

12 /27

Restriction of C/C++ Code Accepted in DOL DOL Applcaton

Specification to

Behavior BIP

Matthieu Gallien

All variable declarations should be at the beginning of
init and fire procedures

Model of DOL Application
Specification

Only one return by procedure

No goto

All DOL_read, DOL_write, DOL_detach in the init and
fire procedure: not in external functions called in those
procedure

13 /27

Example of Translation of DOL software channel

SWChannel ::= Size RecvPort SendPort

DOL

RecvPort
>

size

SendPort
>

RecvPort

BIP

RecvPort

SendPort

(O

size

(O

SendPort

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Model of DOL Application
Specification

14 /27

Translation of

Translation of DOL connections DOL Applieation

Specification to
BIP

Matthieu Gallien

Connectionpp; ::= output input

Connectiongp ::= connector(output, input)

Model of DOL Application
Specification

e For each connection corresponds one BIP connector

e |t will transfer the size and the address of the data to
be transfered:;

e It will also synchronise the two components during the
copy of the data.

15 /27

For

for ::= for__statement_group condition

statement__group for_statement__group

startFor

@ for_statement_group

statement_group

startLoop

not condition

endFor

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

BIP Models for C Code
Elements

16 /27

Translation of

SWItCh DOL Application
Specification to
BIP
Matthieu Gallien
switch ::= variable.(case) ™. {default}
case ::= value.statement__group

default ::= default.statement__group

1 BIP Models for C Code
case Elements

variable == vall O

variable == val2

startSwitch endSwitch

variable == val3

variable == valn

17 /27

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien
if .::= condition statement_group [statement_group

startlf . testlf
compute(condition) BIP Models for C Code
Elements
7/ \,
/ \
/ \
/ \
/ \
1 \
! \
1 \
1 1
: ‘.
condition | I not condition
statement_group | | statement_group
1 I
1]
\ 1
\ 1
1 1
\\ Il
\ endlIf /

18 /27

Translation of

D O L_Write DOL Application

Specification to
BIP

Matthieu Gallien

DOL_write ::= ProcOutPort Size Address

BIP Models for C Code
Elements

start startWrite endWrite

: compute(Size, Address) : ProcOutPort :

19 /27

start end

: executeCode :

20/27

Compiler Architecture

DOL Specification
(XML files)

BIP Model

DOL Specification
(source code files)

AST

>

Intermediate Model

Model Transformations

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Implementation

21 /27

Translation of

Model Transformations DOL Applieation

Specification to
BIP

Matthieu Gallien

@ Transform code that is not conformant to the
restrictions we put on C code into conformant code

® Generate code for initializing variables

Implementation

©® Replace all DOL specificities into something equivalent
but with no dependencies to DOL (access to internal
data of DOL implementation, ...)

Compiler Optimisation

@ Collapsing code tree without DOL special functions

® Merging sequential code without DOL special functions

© Transforming for loops into simpler while loops if
possible (i.e. does not contain continue statements)

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Implementation

23 /27

Complete Filter Example

portOut_write

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Producer @——@ S\W CChannel SWChannel
input
output output
output portA_read portD_write
SWChannel input Examples
portin_read portC_write portB_read
Consumer

24 /27

Filter Example: Producer Process

int producer_fire(DOLProcess *p)
{

int index;
srand(0); //initialize random number generator

//generate input samples and display them
[printf ("producer: samples = { ");

ffor (index = 0; index < 10; index++) {
if (index < 9) {
printf ("%+3.1f, ", p->local->sample[index]);
{
printf("%+3.1f }\n", p->local->sample[index]);

i

//write samples t:

portOut_write

p->local->sample[index] = (float) getRandomNumber(-9, 9); |— |

else | —

for (findex = 0
printt ("/8s:

P
] index < 10; w
Wr]te sample[.02d] 6.4f\n"
DOL_write((void#)PORT_OUT, &(p >local-: >samp1e[1ndex]),
sizeof (float), p);

¥

DOL_detach(p) ;
return -1;

portOut_write

executeCode

not condition
(index < 10)

condition (index < 10)
executeCode

Translation of
DOL Application
Specification to

BIP

Matthieu Gallien

Examples

25 /27

Trace of Filter Example

producer.

producar:

producer.

producar:

producer:

producer:

producer:

producer:

producer:

producer:

producer:

censuner:

SystenC 2.2.0 --- Nov 3 2008 14:53:36
Copyright [c] 1996-2006 by all Contributors
ALL RIGHTS RESERVED

samples = { -7.0, +6.0, -6.0, -6.0, +1.0, -1

Write samplel00]: -7.0000

Write sample[01]: +6.0000

Write samplel02]: -6.0000
Read sample[00]

Write samplel03]: -6.0000
Read samplel 011

Write sample(04]: +1.0009
Read sampl el 02]

Write samplel0s]: -1.0009
Read samplel 03]

Write sample(06]: +1.0009
Read samplel 04]

Write samplel07]: +2.0000
Read sampl el 05]

Write sample(08]: -7.0000
Read sampl <[06]

Write sample(08]: -2.0000
Read sampl e[07]
Read sample(08]
Read sampl e[09]

o,

-7.

42,

-4

K

K

2

E

41

3

000

5000

7500

3750

1875

5938

+2.0,

7.0,

-2.0 }

producer
producer
producer
producer
consuner
producar
producar
producer
eonsuner
producar
eonsuner
producer
producer
producer
eonsuner

* BIP Engine (Version 1.0)
" Verinag,
*wwn-verinag. imag. f r/~asyne /BT

France

P/bip. html)*

sanples = { 7.0,
Write samplel00]
Write sanplel0l]
Write samplel02]
Write samplel03]
Write samplel04]
Write sanplel05]
Write samplel0s]
Write sanplel07]

Write sample(08]

Write sample(0s]

+6,
-7

-5

-5

41

1

41

2,

-7

2

000
000

000

000

000

000

Read

Read

Read

0, +1.0, -1.

sanplel00]:
sanplelo1]
sanplel02]:
sanplel 03]
sanplel04]
sanplel05]:
sanplel06]
sanple[07]

sanplelo8]:
sanplel05]

[

-7

+2

-4

K3

K

-2

-0

1

-6
s

+1.0,

0000

5000

7500

2750

1875
5938

+2.0,

7.0,

2.0+

Conclusion and Future Work e

Specification to
BIP

Matthieu Gallien

e Fully automatic translation of 7 DOL examples

e Produces a BIP model that is usable for model
transformations

e Need to support more complex examples like MPEG
decoder Conclusion

e We want to implement model transformations in order
to apply hardware constraints to the model of the
software

27 /27

	Introduction
	Translating a DOL Application to a BIP Model
	Quick Summary of DOL
	Model of DOL Application Specification
	BIP Models for C Code Elements
	Implementation

	Examples
	Conclusion

