Equality and equivalence relations in formal
proofs

Pierre CORBINEAU

DCS day, Autrans, 26-27 march 2009

A short introduction to myself

Outline

0 A short introduction to myself

A short introduction to myself

Curriculum

1998-2002 Student at ENS, rue d’'UIm

sprmg 2000 Stage (4 months) with Rance Cleaveland
SUNY Stony Brook (NY, USA)
first contact with model-checking

2001-2005 Ph.D. student at Université Paris-Sud
S Lhedss+s with Christine Paulin-Mohring and Claude Marché
Automated reasoning in Type Theory

2005-2008 Post-Doc Radboud Universiteit Nijmegen
with Herman Geuvers and Henk Barendregt
I éanguages and interfaces for formal proofs

Radboud University Nijmegen {¥5}%

N2

A short introduction to myself

Recherche topic: formal proofs

@ Computer-hosted and -handled object
@ explicit et detailed description of a reasoning process
@ Can be checked mechanically

Proof Assistants for :

@ Formalising mathematics (4 colours Theorem)

@ Critical software and system verification (CompCert)
Problems with formal proofs :

@ Lengthy and tedious work: little automation

@ Complicated and arbitrary Proof Language

@ Disposable write-only Proofs

A short introduction to myself

Research contributions: Ph.D.

Pragmatic approach:

@ Metatheoretical justification
@ Implementation and distribution
Thesis: Automating reasoning in Coq
@ Equational logic
congruence tactic implemented and released with Coq

@ Intuitionnistic first-order logic
firstorder tactic implemented and released with Coq

@ Importing proofs from external automated tools
Method using computational reflection
Prototype for rewriting with CiME

Impact : Widely used procedures (CompCert...) ASPAT
and DeCert Projects (CNAM, LRI)

A short introduction to myself

Research contributions: Post-doc

Development of innovative proof interfaces

@ The C-zar proof language
Simple langage with few instructions
Explicit logic based langage
Increased readability
@ Proof interfaces: The Wiki way
A Wiki-Coq prototype
Collaboration and outreach platform
Project proposals (STREP —refused , Dutch — accepted)

Metatheoretical research :

@ Enriched pattern-matching constructs for Type Theory
Objective: programming and easier proofs with
dependently-typed objects

A short introduction to myself

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.

end proof.
Qed.

A short introduction to myself

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.

let n:nat.

per induction on n.

end induction.
end proof.
Qed.

A short introduction to myself

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is 0.

suppose it is (S m) and Hrec:thesis for m.

end induction.
end proof.
Qed.

A short introduction to myself

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is 0.
thus (0=0).
suppose it is (S m) and Hrec:thesis for m.
have (div2 (double (S m))
= div2 (S (S (double m)))).
"= (S (div2 (double m))).
thus "= (S m) by Hrec.
end induction.
end proof.
Qed.

A short introduction to myself

800 Binomial coefficient - MathWiki - Iceweasel

MathWIkI Flle Edt View History Bookmarks Tools Help
<4 »|¢ X|[@| Whttp://mathwi omial_coefficienthtml EEO = Q" Google

Log in / create account |4

article | [discussion dit this page | [hisiory

MathWiki @ Binomial coefficient

In mathematics,

. a binomial coefficient is a coeff

particularly in combinatori nt of any of the terms in the expansion of
the binomial (4+y)". Collouially given, say there are n pizza toppings to select from, if one wishes to bake a pizza with

exactly k toppings. then the binomial coefficient expresses how many different types of such k-topping pizzas are possible.

= Main Page
= Contents Definition [edit]

= Featured con

- Currente:

nts Given a non-negative integer 1 and an integer k, the binomial coefficient is defined to be the natural number

m\ _ni(n=1)-(n-k+1) n!
k k- (k—1)--1 K(n =R

= Random article

Wiki + [—

s)|
proof :
where n! denotes the factorial of n.

. [
assistants Theorem | [Proot | || pefinition in Coq (edit for

toolbox

ifn>k>0

0 ifk<Oork>n

Definition C (n p:nat) :
» Whatlinks here (fact n) / ((fact p) * 1fact (n-p)).

- Related changes

+ Upload file D in Mizar (edit for
+ Special page: definition
» Printable version let k,n be natural number;
« Permanent link func n choose k means
« Cite this page i: NEWTON: def 3

- for 1 be natural number st 1 = n-k holds
formalizations it = (n!)/((k!) * (1)) if n >=k
= Coq formalization otherwise it =

end;

« Tsabelle formalization
= Mizar formalization In Isabelle: create formalization
- OMDoc document

Properties of binomial coefficients [edit]

N "), (edit semantic formula in OMDoc)
k, n—k,

‘This follows immediately from the definition or can be seen from expansion (2) by using (x +)" = (y +x)", and is
reflected in the numerical "symmetry" of Pascal's triangle.

In Coq (edit formalization)

Lemma pascal stepl : forall n i:nat, (i <=n)%nat -> Cni=0Cn (n - i).

Equality and equivalence relations in Coq

Outline

@ Equality and equivalence relations in Cog

Equality and equivalence relations in Coq

Equational reasoning in Coq

The standard equality in Coq.
@ Equality is defined inductively as
Inductive eq (A:Type) (x:A) : A —-> Prop :=
refl _equal : eqg A x X.
o Equality states the identity of two objects of the same type
@ Equality allows replacement in any well typed context:
eqgq_ind : forall (A:Type) (x:A) (P:A —-> Prop),
P x -> forall vy : A, x =y —> Py

@ The following are equivalent:

@ There existaclosedtermt:eq B u v
©Q u =5 v (uand v compute into the same value)

Equality and equivalence relations in Coq

Limit #1: intensional vs extensional

A frequent problem in system verification : execution traces.

@ infinite traces datatype:

CoInductive trace (A:Type) : Type :=
Cons : A —> trace A —> trace A.

o If we define two similar traces:

CoFixpoint a := Cons nat 42 a.
CoFixpoint b := Cons nat 42 (Cons nat 42 b).

@ We can prove that a=a and b=b

@ But we cannot prove that a=b !

@ a and b are observationally (extensionally) the same, but
not intensionally (as fixpoint definitions).

We need to use an equivalence relation.

Equality and equivalence relations in Coq

Limit #1: second attempt

What if trace 2 is defined as nat -> A ?

@ Suppose we have a primality test
is_prime : nat -> bool
o If we define two similar traces:

Definition a (n:nat) := 42.
Definition b (n:nat) :=
if is_prime n then 42 else 42.

@ Again we can prove that a=a and b=b
@ But again we cannot prove that a=b !
@ Same problem with probability distributions

We need to use an equivalence relation.

Equality and equivalence relations in Coq

Limit #2: inconsistent axioms

How would you represent integer polynomials ?

@ Easy:

Inductive poly :=
Null : poly | mXp : poly —-> nat -> poly.

@ Now we want to identify identical polynomials:
Axiom Null_Null : mXp Null 0 = Null.
@ Now we can prove that Null_Null is inconsistent !

We need to use an equivalence relation.

Equality and equivalence relations in Coq

What is a setoid ?

A setoid is defined as :
@ A carrier type A
@ An equivalence relation ~4: A— A — Propi.e.
o reflexive :Va: A,a~, a
o symmetric:Va,b: Ajax~a b — b=, a
o transitive : Va,b,c: A,a~pb—b~pCc—a~sc

Examples:
@ Prop quotiented by <->
@ poly quotiented by mXp Null 0 =~ Null
@ A —> B quotiented by extensional equivalence

Equality and equivalence relations in Coq

One setoid leads to another

A setoid morphism is defined as :
@ Afunctionf: A— B
@ Anproof of Vay,as : A a1 =4 ax — f(a1) =p f(az)

Morphisms turn equivalent input into equivalent output.
Examples:
@ The function that chops leading zeros off polynomials
@ The tail function on traces (both definitions)
@ Apredicate P:A —> Prop is a morphism from =4 to <—>
@ The composition of morphisms is a morphism

Equality and equivalence relations in Coq

From total to partial setoids

An natural definition for ~4_, g is:
fp.pg < Vay,a: A as ~a & — f(ar) =g g(a2)
@ Good news: fis a morphism if, and only if f =4 .5 f
@ Bad news: some functions are not morphisms
@ =,_.p is not reflexive
o A— B/ =4_pisnot a setoid

Solution: drop the reflexivity conditions and work with partial
equivalence relations and partial setoids

Equality and equivalence relations in Coq

Partial setoids

A is:
@ symmetric: Va,b: Aja~ab— b=pa
o transitive : Va,b,c: A,a~ab - b=~apCc—a~ycC
@ not reflexive in general

Theorem

If A/ =4 and B/ ~p are partial setoids, then A — B/ ~4_.gis
too.

| \

N,

Partial setoids are the correct notion:

f~pa.Bg X=pay
f(x) ~5 g(y)

CONGR

Equality and equivalence relations in Coq

The congruence-closure algorithm

Satisfiability of finite sets of equalities and inequalities
[Downey,Sethi, Tarjan,1980]

@ Uses Union-Find structures for equivalence classes of
terms

@ Merges classes containing equivalent terms

@ Tries to build a model of the given constraints

@ Supports only one total equivalence relation

Implemented in congruence tactic.

Equality and equivalence relations in Coq

Congruence-closure for Partial setoids

All relations are by definition stable w.r.t. equality :

~AZ X=pay yYy=2
Z STABLE-L X ~pZ STABLE-R

ldea: Equivalence classes of terms for setoid relations
implemented as classes of equality classes

@ Mark individual equality classes as reflexive:

XmpaX X=Y
y=ay

STABLE

Equality and equivalence relations in Coq

Beyond ground equations

Use congruence closure in an iterative semi-decision

@ Propagate all constraints
© Check for contradiction
© Generate instances for quantified hypotheses
© Go back to step 1
Instances generation: an efficient E-matching algorithm

Work in the Prop/ <= setoid to mix in some propositional
reasoning.

Equality and equivalence relations in Coq

Further work

@ Prove completeness of the method

@ Implement the procedure

@ Find a satisfactory strategy for instances
@ Study propositional extensions

@ Study reflexion rule

Use it on actual proofs.

Equality and equivalence relations in Coq

Thank you for your attention

	A short introduction to myself
	Equality and equivalence relations in Coq

