Equality and equivalence relations in formal proofs

Pierre CORBINEAU

DCS day, Autrans, 26-27 march 2009

Outline

Equality and equivalence relations in Coq

Curriculum

spr 2000

1998-2002 Student at ENS, rue d'Ulm

ing 2000	Stage (4 months) with Rance Cleaveland
	SUNY Stony Brook (NY, USA)
	first contact with model-checking

2001-2005 Ph.D. student at Université Paris-Sud with Christine Paulin-Mohring and Claude Marché Automated reasoning in Type Theory

Radboud University Nijmegen

Post-Doc Radboud Universiteit Nijmegen with Herman Geuvers and Henk Barendregt Languages and interfaces for formal proofs

Recherche topic: formal proofs

- Computer-hosted and -handled object
- explicit et detailed description of a reasoning process
- Can be checked mechanically
- Proof Assistants for :
 - Formalising mathematics (4 colours Theorem)
 - Critical software and system verification (CompCert)

Problems with formal proofs :

- Lengthy and tedious work: little automation
- Complicated and arbitrary Proof Language
- Disposable write-only Proofs

Research contributions: Ph.D.

Pragmatic approach:

- Metatheoretical justification
- Implementation and distribution

Thesis: Automating reasoning in Coq

- Equational logic congruence tactic implemented and released with Coq
- Intuitionnistic first-order logic firstorder tactic implemented and released with Coq
- Importing proofs from external automated tools Method using computational reflection Prototype for rewriting with CiME

Impact : Widely used procedures (CompCert...) A3PAT and DeCert Projects (CNAM, LRI)

Research contributions: Post-doc

Development of innovative proof interfaces

- The C-zar proof language Simple langage with few instructions Explicit logic based langage Increased readability
- Proof interfaces: The Wiki way A Wiki-Coq prototype Collaboration and outreach platform Project proposals (STREP – refused, Dutch – accepted)

Metatheoretical research :

 Enriched pattern-matching constructs for Type Theory Objective: programming and easier proofs with dependently-typed objects

Lemma double_div2: forall n, div2 (double n) = n.
proof.

end proof. Qed.

Lemma double_div2: forall n, div2 (double n) = n.
proof.

let n:nat.

per induction on n.

end induction. end proof. Qed.

```
Lemma double_div2: forall n, div2 (double n) = n.
proof.
  let n:nat.
  per induction on n.
    suppose it is 0.
```

suppose it is (S m) and Hrec:thesis for m.

end induction. end proof. Qed.

```
Lemma double div2: forall n, div2 (double n) = n.
proof.
  let n:nat.
  per induction on n.
     suppose it is 0.
       thus (0=0).
     suppose it is (S m) and Hrec: thesis for m.
       have (div2 (double (S m))
              = \operatorname{div2} (S (S (\operatorname{double} m)))).
             \tilde{} = (S (div2 (double m))).
       thus \tilde{} = (S m) by Hrec.
  end induction.
end proof.
Oed.
```


Outline

2 Equality and equivalence relations in Coq

Equational reasoning in Cog

The standard equality in Coq.

Equality is defined inductively as

Inductive eq (A:Type) (x:A) : $A \rightarrow Prop :=$ refl equal : eq A x x.

- Equality states the identity of two objects of the same type
- Equality allows replacement in any well typed context:

eq_ind : forall (A:Type) (x:A) (P:A -> Prop), $P \times -> forall y : A, x = y -> P y$

The following are equivalent:

There exist a closed term t:eq B u v

2 $u =_{\beta} v$ (u and v compute into the same value)

Limit #1: intensional vs extensional

A frequent problem in system verification : execution traces.

• infinite traces datatype:

CoInductive trace (A:Type) : Type := Cons : A -> trace A -> trace A.

If we define two similar traces:

CoFixpoint a := Cons nat 42 a. CoFixpoint b := Cons nat 42 (Cons nat 42 b).

- We can prove that a=a and b=b
- But we cannot prove that a=b !
- a and b are observationally (extensionally) the same, but not intensionally (as fixpoint definitions).

We need to use an equivalence relation.

Limit #1: second attempt

What if trace A is defined as nat -> A?

Suppose we have a primality test

is_prime : nat -> bool

If we define two similar traces:

```
Definition a (n:nat) := 42.
Definition b (n:nat) :=
    if is_prime n then 42 else 42.
```

- Again we can prove that a=a and b=b
- But again we cannot prove that a=b !
- Same problem with probability distributions

We need to use an equivalence relation.

Limit #2: inconsistent axioms

How would you represent integer polynomials ?

```
Easy :
```

```
Inductive poly :=
   Null : poly | mXp : poly -> nat -> poly.
```

• Now we want to identify identical polynomials:

Axiom Null_Null : mXp Null 0 = Null.

• Now we can prove that Null_Null is inconsistent !

We need to use an equivalence relation.

What is a setoid ?

A setoid is defined as :

- A carrier type A
- An equivalence relation $\approx_A : A \to A \to Prop$ i.e.
 - reflexive : $\forall a : A, a \approx_A a$
 - symmetric : $\forall a, b : A, a \approx_A b \rightarrow b \approx_A a$
 - transitive : $\forall a, b, c : A, a \approx_A b \rightarrow b \approx_A c \rightarrow a \approx_A c$

Examples:

- Prop quotiented by <->
- poly quotiented by mXp Null 0 \approx Null
- A -> B quotiented by extensional equivalence

One setoid leads to another

A setoid morphism is defined as :

- A function $f : A \rightarrow B$
- An proof of $\forall a_1, a_2 : A, a_1 \approx_A a_2 \rightarrow f(a_1) \approx_B f(a_2)$

Morphisms turn equivalent input into equivalent output. Examples:

- The function that chops leading zeros off polynomials
- The tail function on traces (both definitions)
- A predicate P:A -> Prop is a morphism from =_A to <->
- The composition of morphisms is a morphism

From total to partial setoids

An natural definition for $\approx_{A \rightarrow B}$ is:

 $f \approx_{A \rightarrow B} g \iff \forall a_1, a_2 : A, a_1 \approx_A a_2 \rightarrow f(a_1) \approx_B g(a_2)$

• Good news: *f* is a morphism if, and only if $f \approx_{A \to B} f$

Bad news: some functions are not morphisms

- $\approx_{A \to B}$ is not reflexive
- $A \to B / \approx_{A \to B}$ is not a setoid

Solution: drop the reflexivity conditions and work with partial equivalence relations and partial setoids

Partial setoids

A partial equivalence relation is:

- symmetric : $\forall a, b : A, a \approx_A b \rightarrow b \approx_A a$
- transitive : $\forall a, b, c : A, a \approx_A b \rightarrow b \approx_A c \rightarrow a \approx_A c$
- not reflexive in general

Theorem

If
$$A/\approx_A$$
 and B/\approx_B are partial setoids, then $A \to B/\approx_{A \to B}$ is too.

Partial setoids are the correct notion:

$$\frac{f \approx_{A \to B} g \quad x \approx_A y}{f(x) \approx_B g(y)} \text{ Congr}$$

The congruence-closure algorithm

Satisfiability of finite sets of equalities and inequalities [Downey,Sethi,Tarjan,1980]

- Uses Union-Find structures for equivalence classes of terms
- Merges classes containing equivalent terms
- Tries to build a model of the given constraints
- Supports only one total equivalence relation

Implemented in congruence tactic.

Congruence-closure for Partial setoids

All relations are by definition stable w.r.t. equality :

$$\frac{x = y \quad y \approx_A z}{x \approx_A z} \text{ Stable-L} \qquad \frac{x \approx_A y \quad y = z}{x \approx_A z} \text{ Stable-R}$$

Idea: Equivalence classes of terms for setoid relations implemented as classes of equality classes

• Mark individual equality classes as reflexive:

$$\frac{x \approx_A x \quad x = y}{y \approx_A y}$$
 Stable

Beyond ground equations

Use congruence closure in an iterative semi-decision

- Propagate all constraints
- Check for contradiction
- Generate instances for quantified hypotheses
- Go back to step 1

Instances generation: an efficient E-matching algorithm Work in the $Prop/\iff$ setoid to mix in some propositional reasoning.

Further work

- Prove completeness of the method
- Implement the procedure
- Find a satisfactory strategy for instances
- Study propositional extensions
- Study reflexion rule

Use it on actual proofs.

Thank you for your attention