
A short introduction to myself Equality and equivalence relations in Coq

Equality and equivalence relations in formal
proofs

Pierre CORBINEAU

DCS day, Autrans, 26-27 march 2009



A short introduction to myself Equality and equivalence relations in Coq

Outline

1 A short introduction to myself

2 Equality and equivalence relations in Coq



A short introduction to myself Equality and equivalence relations in Coq

Curriculum

1998-2002 Student at ENS, rue d’Ulm

spring 2000 Stage (4 months) with Rance Cleaveland
SUNY Stony Brook (NY, USA)
first contact with model-checking

2001-2005 Ph.D. student at Université Paris-Sud
with Christine Paulin-Mohring and Claude Marché
Automated reasoning in Type Theory

2005-2008 Post-Doc Radboud Universiteit Nijmegen
with Herman Geuvers and Henk Barendregt
Languages and interfaces for formal proofs



A short introduction to myself Equality and equivalence relations in Coq

Recherche topic: formal proofs

Computer-hosted and -handled object
explicit et detailed description of a reasoning process
Can be checked mechanically

Proof Assistants for :
Formalising mathematics (4 colours Theorem)
Critical software and system verification (CompCert)

Problems with formal proofs :
Lengthy and tedious work: little automation
Complicated and arbitrary Proof Language
Disposable write-only Proofs



A short introduction to myself Equality and equivalence relations in Coq

Research contributions: Ph.D.

Pragmatic approach:

1 Metatheoretical justification
2 Implementation and distribution

Thesis: Automating reasoning in Coq

Equational logic
congruence tactic implemented and released with Coq
Intuitionnistic first-order logic
firstorder tactic implemented and released with Coq
Importing proofs from external automated tools
Method using computational reflection
Prototype for rewriting with CiME

Impact : Widely used procedures (CompCert. . . ) A3PAT
and DeCert Projects (CNAM, LRI)



A short introduction to myself Equality and equivalence relations in Coq

Research contributions: Post-doc

Development of innovative proof interfaces

The C-zar proof language
Simple langage with few instructions
Explicit logic based langage
Increased readability
Proof interfaces: The Wiki way
A Wiki-Coq prototype
Collaboration and outreach platform
Project proposals (STREP – refused , Dutch – accepted)

Metatheoretical research :

Enriched pattern-matching constructs for Type Theory
Objective: programming and easier proofs with
dependently-typed objects



A short introduction to myself Equality and equivalence relations in Coq

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.

let n:nat.
per induction on n.
suppose it is 0.

thus (0=0).
suppose it is (S m) and Hrec:thesis for m.

have (div2 (double (S m))
= div2 (S (S (double m)))).

˜= (S (div2 (double m))).
thus ˜= (S m) by Hrec.

end induction.

end proof.
Qed.



A short introduction to myself Equality and equivalence relations in Coq

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.

suppose it is 0.
thus (0=0).

suppose it is (S m) and Hrec:thesis for m.
have (div2 (double (S m))

= div2 (S (S (double m)))).
˜= (S (div2 (double m))).

thus ˜= (S m) by Hrec.

end induction.
end proof.
Qed.



A short introduction to myself Equality and equivalence relations in Coq

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is 0.

thus (0=0).

suppose it is (S m) and Hrec:thesis for m.

have (div2 (double (S m))
= div2 (S (S (double m)))).

˜= (S (div2 (double m))).
thus ˜= (S m) by Hrec.

end induction.
end proof.
Qed.



A short introduction to myself Equality and equivalence relations in Coq

The C-zar proof language

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is 0.

thus (0=0).
suppose it is (S m) and Hrec:thesis for m.

have (div2 (double (S m))
= div2 (S (S (double m)))).

˜= (S (div2 (double m))).
thus ˜= (S m) by Hrec.

end induction.
end proof.
Qed.



A short introduction to myself Equality and equivalence relations in Coq

MathWiki

Wiki +
proof
assistants



A short introduction to myself Equality and equivalence relations in Coq

Outline

1 A short introduction to myself

2 Equality and equivalence relations in Coq



A short introduction to myself Equality and equivalence relations in Coq

Equational reasoning in Coq

The standard equality in Coq.
Equality is defined inductively as
Inductive eq (A:Type) (x:A) : A -> Prop :=

refl_equal : eq A x x.

Equality states the identity of two objects of the same type
Equality allows replacement in any well typed context:

eq_ind : forall (A:Type) (x:A) (P:A -> Prop),
P x -> forall y : A, x = y -> P y

The following are equivalent:
1 There exist a closed term t:eq B u v
2 u =β v (u and v compute into the same value)



A short introduction to myself Equality and equivalence relations in Coq

Limit #1: intensional vs extensional

A frequent problem in system verification : execution traces.

infinite traces datatype:
CoInductive trace (A:Type) : Type :=

Cons : A -> trace A -> trace A.

If we define two similar traces:
CoFixpoint a := Cons nat 42 a.
CoFixpoint b := Cons nat 42 (Cons nat 42 b).

We can prove that a=a and b=b

But we cannot prove that a=b !
a and b are observationally (extensionally) the same, but
not intensionally (as fixpoint definitions).

We need to use an equivalence relation.



A short introduction to myself Equality and equivalence relations in Coq

Limit #1: second attempt

What if trace A is defined as nat -> A ?

Suppose we have a primality test
is_prime : nat -> bool

If we define two similar traces:
Definition a (n:nat) := 42.
Definition b (n:nat) :=

if is_prime n then 42 else 42.

Again we can prove that a=a and b=b

But again we cannot prove that a=b !
Same problem with probability distributions

We need to use an equivalence relation.



A short introduction to myself Equality and equivalence relations in Coq

Limit #2: inconsistent axioms

How would you represent integer polynomials ?

Easy :
Inductive poly :=

Null : poly | mXp : poly -> nat -> poly.

Now we want to identify identical polynomials:
Axiom Null_Null : mXp Null 0 = Null.

Now we can prove that Null_Null is inconsistent !

We need to use an equivalence relation.



A short introduction to myself Equality and equivalence relations in Coq

What is a setoid ?

A setoid is defined as :
A carrier type A
An equivalence relation ≈A: A→ A→ Prop i.e.

reflexive : ∀a : A, a ≈A a
symmetric : ∀a, b : A, a ≈A b → b ≈A a
transitive : ∀a, b, c : A, a ≈A b → b ≈A c → a ≈A c

Examples:

Prop quotiented by <->
poly quotiented by mXp Null 0 ≈ Null

A -> B quotiented by extensional equivalence



A short introduction to myself Equality and equivalence relations in Coq

One setoid leads to another

A setoid morphism is defined as :
A function f : A→ B
An proof of ∀a1, a2 : A, a1 ≈A a2 → f (a1) ≈B f (a2)

Morphisms turn equivalent input into equivalent output.
Examples:

The function that chops leading zeros off polynomials
The tail function on traces (both definitions)
A predicate P:A -> Prop is a morphism from =A to <->

The composition of morphisms is a morphism



A short introduction to myself Equality and equivalence relations in Coq

From total to partial setoids

An natural definition for ≈A→B is:
f ≈A→B g ⇐⇒ ∀a1, a2 : A, a1 ≈A a2 → f (a1) ≈B g(a2)

Good news: f is a morphism if, and only if f ≈A→B f
Bad news: some functions are not morphisms

≈A→B is not reflexive
A→ B/ ≈A→B is not a setoid

Solution: drop the reflexivity conditions and work with partial
equivalence relations and partial setoids



A short introduction to myself Equality and equivalence relations in Coq

Partial setoids

A partial equivalence relation is:
symmetric : ∀a, b : A, a ≈A b → b ≈A a
transitive : ∀a, b, c : A, a ≈A b → b ≈A c → a ≈A c
not reflexive in general

Theorem
If A/ ≈A and B/ ≈B are partial setoids, then A→ B/ ≈A→B is
too.

Partial setoids are the correct notion:

f ≈A→B g x ≈A y
f (x) ≈B g(y)

CONGR



A short introduction to myself Equality and equivalence relations in Coq

The congruence-closure algorithm

Satisfiability of finite sets of equalities and inequalities
[Downey,Sethi,Tarjan,1980]

Uses Union-Find structures for equivalence classes of
terms
Merges classes containing equivalent terms
Tries to build a model of the given constraints
Supports only one total equivalence relation

Implemented in congruence tactic.



A short introduction to myself Equality and equivalence relations in Coq

Congruence-closure for Partial setoids

All relations are by definition stable w.r.t. equality :

x = y y ≈A z
x ≈A z STABLE-L

x ≈A y y = z
x ≈A z STABLE-R

Idea: Equivalence classes of terms for setoid relations
implemented as classes of equality classes

Mark individual equality classes as reflexive:

x ≈A x x = y
y ≈A y STABLE



A short introduction to myself Equality and equivalence relations in Coq

Beyond ground equations

Use congruence closure in an iterative semi-decision

1 Propagate all constraints
2 Check for contradiction
3 Generate instances for quantified hypotheses
4 Go back to step 1

Instances generation: an efficient E-matching algorithm
Work in the Prop/ ⇐⇒ setoid to mix in some propositional
reasoning.



A short introduction to myself Equality and equivalence relations in Coq

Further work

Prove completeness of the method
Implement the procedure
Find a satisfactory strategy for instances
Study propositional extensions
Study reflexion rule

Use it on actual proofs.



A short introduction to myself Equality and equivalence relations in Coq

Thank you for your attention


	A short introduction to myself
	Equality and equivalence relations in Coq

