
 

Certifying Deadlock Freedom of BIP Models 
 

A Case Study for the Certification of Safety Critical Software

Jan Olaf Blech 



 

Overview

● Our General Methodology

● The D-Finder Case Study

● Improvements and Future Work



 

Our Approach

verification toolsystem
checked

user

●  Goal: guarantee  correctness of verification tools



 

Our Approach

verification toolsystem
checked

user

●  Goal: guarantee  correctness of verification tools

● verification tools may contain errors
● wrong results
● not accepted by certification authorities

● verification tools are often domain specific
● results can be difficult to understand
● reuse by other verification tools can be hard
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Main Idea

● Automated verification tools (e.g. model checkers)

● relatively fast / high degree of automation
● specific application domain
● large untrusted code base

● Higher-order theorem provers (e.g. Coq)

● relatively slow / interactive reasoning
● can be used for all kinds of logical reasoning 
● high level of trust 

● Combine the advantages
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Main Characteristics

● results of automated verification tools are put to 
a high level of trust 
● for certification of software systems

– Common Criteria EAL 7 certification
● without having to reveal verification tool know-how

– robust to undocumented extensions
● by using human readable specifications

– formalized in a higher-order theorem prover
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● certificates are theorem prover proof scripts

● certificate: property + proof
● creation by just documenting the discovery process

– no need to redo tasks that have been done by the 
verification tool

– robust to minor implementation changes
– relatively easy -- “intelligent part” is in the algorithms of 

the tool
● general interchange format
● allows for combination of certificates
● checking them may be a bottleneck
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● certificates are theorem prover proof scripts

● certificate: property + proof
● creation by just documenting the discovery process

– no need to redo tasks that have been done by the 
verification tool

– robust to minor implementation changes
– relatively easy -- “intelligent part” is in the algorithms of 

the tool
● general interchange format
● allows for combination of certificates
● checking them may be a bottleneck

main challenge for the 
verification tool developer

main challenge for the certificate infrastructure developer



 

Overview

● Our General Methodology

● The D-Finder Case Study

● Improvements and Future Work



 

Certificates for D-Finder

D-Finder

invariant generation  analysis

certificate generation

certificate checker

system
checked

user

proved



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑

↑

↑

the generated proofs



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑

↑

↑

no deadlocks



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑
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most challenging task



 

Coq Semantics
    Operational semantics for fat BIP models

– atomic components

● states
– variables: (var  ⇒ val) mapping

– location

● transitions 
– source location

– guard function: (var  ⇒ val) ⇒ bool
– update function: (var  ⇒ val) ⇒ (var  ⇒ val)

– port
– target location

– composed components
● states: list of atomic components' states

● interactions: list of ports

● semantics: 1 inference rule



 

Proving an Inductive Invariant

● verification goal

CI
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n
(s) ∧ II

1
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(s) 

prove subpredicates independently
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predicates may not always be inductive



 

Proving an Inductive Invariant

● induction

s  s'

(a (init) ∨ ... ∨ a (init)) ∧ C(init) 
1 n

(a  (s) ∨ ... ∨ a  (s)) ∧ C(s) 
1 n

(a (s') ∨ ... ∨ a  (s')) ∧ C(s') 
1 n





Solution 1: strengthening using a predicate C



 

Proving an Inductive Invariant

● idea: make invariants weaker so that they 
become inductive
● some parts of invariants seemed 

artificial/unnatural
● some values are delivered by sensors

– they have a certain range of unpreciseness
– keep this range in the BIP model and generate 

invariants for these models ⇒ tend to be inductive

– generated invariants are invariants of the original BIP 
model

Solution 2: produce inductive invariants via robust BIP models

[Blech + Nguyen + Périn '09]



 

Evaluation
● what has been implemented

● (subset of) BIP semantics for Coq
● Coq representation generation implemented in Java 

for (a subset of) BIP based on Java library for BIP2
● automatic proof script generation for invariants 

based on invariants provided by D-Finder 
– implemented in Ocaml
– needs some manual instantiation for certain guard and 

update expressions 

● a few minutes checking time for small BIP 
models
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Reducing Certificate Checking time 
by using Checker Predicates

[joint work with Benjamin Grégoire, INRIA]

● Idea: 
● higher-order theorem provers are slow

 most proof scripts require
– some search for proofs using tactics
– deductive reasoning
– higher-order unfications

● replace this by something computable



 

Reducing Certificate Checking time 
by using Checker Predicates

Proof Goal True/False
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Reducing Certificate Checking time 
by using Checker Predicates

Proof Goal True/False

Proof Goal' True/False

proof

computation

computable domain

deductive reasoning
Property(..,x,...)

P(..,abs(x),...)



 

Checker Predicates
are predicates formalized in a theorem prover
● take e.g. program representations, state 

representations as input
● equivalence or implication of non-checker 

specification
– used instead of tactic applications                        
– direct use out of a proof script                            
– require correctness proof                              

● are formalized in an executable way
– no expensive unifications and rewritings          
– speeds proving process up 



 

Checker Predicates

● in previous work we used them to prove code 
generation correct

● properties of mappings
● simulation of slices of source and target code

– transformation to special computable semantics
● for BIP we are developing a checker predicate:

invariant holds on partially specified state →

invariant holds on successor of partially specified 
state



 

Ideas for Future Work: Certificates 
for BIP Models

● certifying analysis results and transformations

analysis

BIP development chain

● lift correctness results through the development chain

certificates 

optimization transformation

code generation

BIP C++

BIP

embedded 
system



 

Further Ideas for Future Work

● semantics
● hierarchical components
● exploit semantic features in certificate checking
● higher programming language guards updates + 

methods to reason about them explicitly

● SMT/SAT solvers for certificate checking
● extend them to generate Coq proof terms

● combination of certificates
● ...



 

Related Approaches / Work

● (Foundational) Proof Carrying Code
[Necula, Appel,...]

● Translation Validation
● classical approach [Pnueli, Zuck, ...]

● scheduling algorithm in Compcert [Tristan + Leroy '08]

● documenting results of verification tools
● model checkers [Namjoshi,Cleaveland...]

● SAT solver [Zhang + Malik '03]



 

Thank you for your attention!
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