
 

Certifying Deadlock Freedom of BIP Models 
 

A Case Study for the Certification of Safety Critical Software

Jan Olaf Blech 



 

Overview

● Our General Methodology

● The D-Finder Case Study

● Improvements and Future Work



 

Our Approach

verification toolsystem
checked

user

●  Goal: guarantee  correctness of verification tools



 

Our Approach

verification toolsystem
checked

user

●  Goal: guarantee  correctness of verification tools

● verification tools may contain errors
● wrong results
● not accepted by certification authorities

● verification tools are often domain specific
● results can be difficult to understand
● reuse by other verification tools can be hard



 

Our Approach

verification tool

certificate generation

certificate checker

system
checked

user

proved

●  verification tools generate certificates



 

Main Idea

● Automated verification tools (e.g. model checkers)

● relatively fast / high degree of automation
● specific application domain
● large untrusted code base

● Higher-order theorem provers (e.g. Coq)

● relatively slow / interactive reasoning
● can be used for all kinds of logical reasoning 
● high level of trust 

● Combine the advantages



 

Our Approach

verification tool

certificate generation

Coq

system
checked

user

proved

●  verification tools generate certificates

proof script



 

Main Characteristics

● results of automated verification tools are put to 
a high level of trust 
● for certification of software systems

– Common Criteria EAL 7 certification
● without having to reveal verification tool know-how

– robust to undocumented extensions
● by using human readable specifications

– formalized in a higher-order theorem prover



 

Main Characteristics
● certificates are theorem prover proof scripts

● certificate: property + proof
● creation by just documenting the discovery process

– no need to redo tasks that have been done by the 
verification tool

– robust to minor implementation changes
– relatively easy -- “intelligent part” is in the algorithms of 

the tool
● general interchange format
● allows for combination of certificates
● checking them may be a bottleneck



 

Main Characteristics
● certificates are theorem prover proof scripts

● certificate: property + proof
● creation by just documenting the discovery process

– no need to redo tasks that have been done by the 
verification tool

– robust to minor implementation changes
– relatively easy -- “intelligent part” is in the algorithms of 

the tool
● general interchange format
● allows for combination of certificates
● checking them may be a bottleneck

main challenge for the 
verification tool developer

main challenge for the certificate infrastructure developer



 

Overview

● Our General Methodology

● The D-Finder Case Study

● Improvements and Future Work



 

Certificates for D-Finder

D-Finder

invariant generation  analysis

certificate generation

certificate checker

system
checked

user

proved



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑

↑

↑

the generated proofs



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑

↑

↑

no deadlocks



 

Certificates for D-Finder

∀ s. Reachable     (s)  Enabled     (s)
BMBM

∀ s. Reachable    (s)  DIS    (s)
BMBM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. II(s)∧CI(s)  DIS    (s)BM

∀ s. Reachable    (s)  II(s)∧CI(s)BM ∀ s. (II(s)∧CI(s) ∧ DIS    (s))
BM

↑

↑

↑

most challenging task



 

Coq Semantics
    Operational semantics for fat BIP models

– atomic components

● states
– variables: (var  ⇒ val) mapping

– location

● transitions 
– source location

– guard function: (var  ⇒ val) ⇒ bool
– update function: (var  ⇒ val) ⇒ (var  ⇒ val)

– port
– target location

– composed components
● states: list of atomic components' states

● interactions: list of ports

● semantics: 1 inference rule



 

Proving an Inductive Invariant

● verification goal

CI
1
(s) ∧ ... ∧ CI

n
(s) ∧ II

1
 (s) ∧ ... ∧ II

m
(s) 

prove subpredicates independently

∀ s. Reachable     (s)  BM

a
1
(s) ˅ ... ˅ a

j
(s)



 

Proving an Inductive Invariant

● induction

s  s'

(a (init) ∨ ... ∨ a (init)) 
1 n

(a  (s) ∨ ... ∨ a  (s))  
1 n

(a (s') ∨ ... ∨ a  (s'))  
1 n







 

Proving an Inductive Invariant

● induction

s  s'

(a (init) ∨ ... ∨ a (init)) 
1 n

(a  (s) ∨ ... ∨ a  (s))  
1 n

(a (s') ∨ ... ∨ a  (s'))  
1 n





predicates may not always be inductive



 

Proving an Inductive Invariant

● induction

s  s'

(a (init) ∨ ... ∨ a (init)) ∧ C(init) 
1 n

(a  (s) ∨ ... ∨ a  (s)) ∧ C(s) 
1 n

(a (s') ∨ ... ∨ a  (s')) ∧ C(s') 
1 n





Solution 1: strengthening using a predicate C



 

Proving an Inductive Invariant

● idea: make invariants weaker so that they 
become inductive
● some parts of invariants seemed 

artificial/unnatural
● some values are delivered by sensors

– they have a certain range of unpreciseness
– keep this range in the BIP model and generate 

invariants for these models ⇒ tend to be inductive

– generated invariants are invariants of the original BIP 
model

Solution 2: produce inductive invariants via robust BIP models

[Blech + Nguyen + Périn '09]



 

Evaluation
● what has been implemented

● (subset of) BIP semantics for Coq
● Coq representation generation implemented in Java 

for (a subset of) BIP based on Java library for BIP2
● automatic proof script generation for invariants 

based on invariants provided by D-Finder 
– implemented in Ocaml
– needs some manual instantiation for certain guard and 

update expressions 

● a few minutes checking time for small BIP 
models



 

Overview

● Our General Methodology

● The D-Finder Case Study

● Improvements and Future Work



 

Reducing Certificate Checking time 
by using Checker Predicates

[joint work with Benjamin Grégoire, INRIA]

● Idea: 
● higher-order theorem provers are slow

 most proof scripts require
– some search for proofs using tactics
– deductive reasoning
– higher-order unfications

● replace this by something computable



 

Reducing Certificate Checking time 
by using Checker Predicates

Proof Goal True/False

Proof Goal' True/False

proof

computation

computable domain

deductive reasoning



 

Reducing Certificate Checking time 
by using Checker Predicates

Proof Goal True/False

Proof Goal' True/False

proof

computation

computable domain

deductive reasoning
Property(..,x,...)

P(..,abs(x),...)



 

Checker Predicates
are predicates formalized in a theorem prover
● take e.g. program representations, state 

representations as input
● equivalence or implication of non-checker 

specification
– used instead of tactic applications                        
– direct use out of a proof script                            
– require correctness proof                              

● are formalized in an executable way
– no expensive unifications and rewritings          
– speeds proving process up 



 

Checker Predicates

● in previous work we used them to prove code 
generation correct

● properties of mappings
● simulation of slices of source and target code

– transformation to special computable semantics
● for BIP we are developing a checker predicate:

invariant holds on partially specified state →

invariant holds on successor of partially specified 
state



 

Ideas for Future Work: Certificates 
for BIP Models

● certifying analysis results and transformations

analysis

BIP development chain

● lift correctness results through the development chain

certificates 

optimization transformation

code generation

BIP C++

BIP

embedded 
system



 

Further Ideas for Future Work

● semantics
● hierarchical components
● exploit semantic features in certificate checking
● higher programming language guards updates + 

methods to reason about them explicitly

● SMT/SAT solvers for certificate checking
● extend them to generate Coq proof terms

● combination of certificates
● ...



 

Related Approaches / Work

● (Foundational) Proof Carrying Code
[Necula, Appel,...]

● Translation Validation
● classical approach [Pnueli, Zuck, ...]

● scheduling algorithm in Compcert [Tristan + Leroy '08]

● documenting results of verification tools
● model checkers [Namjoshi,Cleaveland...]

● SAT solver [Zhang + Malik '03]



 

Thank you for your attention!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

