
Allen Linear (Interval) Temporal Logic
–Translation to LTL and Monitor Synthesis–

Grigore Roşu1 � and Saddek Bensalem2

1 Department of Computer Science, University of Illinois at Urbana-Champaign, USA
2 VERIMAG, 2 Avenue de Vignate, 38610 Gieres, France

Abstract. The relationship between two well established formalisms for
temporal reasoning is first investigated, namely between Allen’s interval
algebra (or Allen’s temporal logic, abbreviated ATL) and linear tempo-
ral logic (LTL). A discrete variant of ATL is defined, called Allen linear
temporal logic (ALTL), whose models are ω-sequences of timepoints. It is
shown that any ALTL formula can be linearly translated into an equiv-
alent LTL formula, thus enabling the use of LTL techniques on ALTL
requirements. This translation also implies the NP-completeness of ATL
satisfiability. Then the problem of monitoring ALTL requirements is in-
vestigated, showing that it reduces to checking satisfiability; the similar
problem for unrestricted LTL is known to require exponential space. An
effective monitoring algorithm for ALTL is given, which has been imple-
mented and experimented with in the context of planning applications.

1 Introduction
Allen’s interval algebra, also called Allen’s temporal logic (ATL) in this paper, is
one of the best established formalisms for temporal reasoning [5]. It is frequently
used in AI, especially in planning. Linear temporal logic (LTL) [8] is successfully
applied in program verification, temporal databases, and related domains. De-
spite the widespread use of both ATL and LTL, there is no formal and systematic
investigation of their relationship. This paper makes a step in this direction. To
have a semantic basis for such a relationship, we define a discrete variant of
ATL, called Allen linear temporal logic (ALTL), whose syntax and complexity of
satisfiability are the same as for ATL, but whose models resemble those of LTL.

We show that ALTL can be linearly encoded into a subset of LTL. This encod-
ing yields the NP-completeness of the satisfiability problem for an ATL (proposed
in [4]) slightly richer than the original one proposed by Allen. On the practical
side, this result allows us to use the plethora of techniques and analysis tools
developed for LTL on requirements (or compatibilities) expressed using ATL.
Since ATL is the logic of planning, and since validation and verification (V&V)
of complex plans for systems with decisional autonomy is highly desirable, if not
crucial, in many applications, this automated translation into LTL potentially
enables us to use well-understood V&V techniques and tools in a domain lacking
(but in need of) them. Further, it may also support the suggestion made in [2]
that LTL can be itself seriously regarded as a suitable formalism for temporal
reasoning in AI, and particularly in planning. There are, however, complexity
aspects that cannot be ignored (some of them pointed in this paper).
� Supported by NSF grants CCF-0234524, CCF-0448501, and CNS-0509321.

CAV'06, LNCS 4144, pp 263-277, 2006

The importance of monitoring in planing cannot be overestimated. For ex-
ample, an autonomous rover whose execution plans have been rigorously verified
may still fail for reasons such as hardware or operating system failures, unex-
pected terrain in an unknown environment, etc. Having monitors to check online
the execution of plans step by step and to trigger recovery code in case of viola-
tions is of crucial importance. It is the challenge of generating efficient monitors
from planning requirements that motivated the work in this paper. We argue
that a blind use of monitoring algorithms for LTL to monitor ALTL formulae
is not feasible even on small ALTL formulae; then we give a special-purpose
monitoring algorithm for ALTL which only needs to call a boolean satisfiability
checker at each step if synchronous monitoring is desired, or at the end of the
monitoring session if asynchronous monitoring is acceptable, or anywhere in be-
tween, for example at specific relevant events, such as synchronization points.
Since checking satisfiability of a formula is a simpler problem than synchronous
monitoring (a synchronous monitor should report violation right away if the for-
mula is not satisfiable), the algorithm proposed in this paper is asymptotically
optimal. This result is particularly interesting because, for unrestricted LTL, it is
known that any monitor (synchronous or not) needs exponential space [10]. The
proposed monitoring algorithm has been implemented and experimented with
in the context of planning for autonomous rovers.
Preliminaries. We assume the reader familiar with Linear Temporal Logic
(LTL) [8]. We here only recall some basics and introduce our notation. LTL is
interpreted in “flows of time”, modeled as strict linear orders (T,<), where T
is a nonempty set of “time points”.The LTL language consists of propositional
symbols (p0, p1, · · ·), boolean operators (¬ and ∧), and temporal operators U
(“until”) and ◦ (“next”), and LTL formulae follow the common syntax ϕ ::=
p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | ◦ ϕ. LTL models are triples M = (T,<, v)
such that (T,<) is a strict total order (a flow of time) and v is a map called
valuation associating with each variable p a set v(p) ⊆ T of time points (where
p is supposed to be true). The satisfaction relation M |= ϕ is defined as in [8].
Other important temporal operators, such as ♦(eventually) and � (always), are
expressible using U as ♦ϕ = true U ϕ (ϕ will eventually hold) and �ϕ = ¬♦¬ϕ
(ϕ will always hold). ♦ can also be expressed in terms of �, namely ♦ϕ = ¬�¬ϕ.
In this paper we only need the {�,♦}-fragment of LTL (without ◦ and U). Since
♦ and � can be defined in terms of each other, we take the liberty to call this
fragment LTL� (could have also called it LTL♦). The “satisfiability problem”
for a formula ϕ is concerned with whether there is some model M such that
M |= ϕ. The satisfiability problem of LTL formulae is PSPACE-complete, while
the satisfiability of LTL� is NP-complete [11].

2 Allen (Linear) Temporal Logic - ATL (ALTL)

Allen Temporal Logic (ATL) [1] is specified as a framework to deal with in-
complete relative temporal information, such as “event A is before or overlaps
event B”. Allen takes the interval as the primitive temporal quantity and intro-
duces 13 (mutually exclusive) basic binary relations between any two intervals,

CAV'06, LNCS 4144, pp 263-277, 2006

Low Climbing High Climbing−Down Lowaltitude−sv

ALTITUDE

Going(x,tree)At(x) At(tree)location−sv
LOCATION

Not−have−banana Grabbing−banana Have−bananabanana−sv

BANANA

During

Fig. 1. Attributes and compatibilities

with the following intuitive meaning: Equals(i, j) holds iff i and j consist of the
same time points; Meets(i, j) (or MetBy(j, i)) holds iff j starts immediately af-
ter i; Before(i, j) (or After(j, i)) holds iff i starts and ends before j, but there
is also some proper time elapsed between the end of i and the beginning of j;
Overlaps(i, j) (or OverlappedBy(j, i)) holds iff i starts strictly before j starts, they
have some common time points, and i ends strictly before j ends; Contains(i, j)
(or During(j, i)) holds iff j starts strictly after i starts and terminates strictly be-
fore i terminates; Starts(i, j) (or StartedBy(j, i)) holds iff i and j start together
but j continues (strictly) after i ends; dually, Ends(i, j) (or EndedBy(j, i)) holds
iff i and j terminate together but j starts strictly before i starts. Constraints
among intervals, also called requirements or compatibilities, are given as boolean
combinations of such relations on intervals. In (model-)theoretical works on ATL,
time is assumed to flow continuously, typically not at an enumerable rate (e.g.,
timepoints can be rational or real numbers). Following this model, we formally
define the semantics of these interval relations in Definition 4; then we propose
a time-discrete variant of ATL, in which the time-points are enumerable.

ATL is extensively used in AI planing to formalize and reason about concur-
rency and temporal extent. In AI planning, intervals can represent both action
instances and the states of various attributes or components of a system. At-
tributes whose states change over time are called state variables, each being
possibly regarded as a concurrent thread. The history of states of a state vari-
able over a period of time is called a timeline and is typically partitioned into
intervals, where an interval is a set of contiguous timepoints in which the corre-
sponding state variable satisfies some property of interest. A compatibility then
determines necessary correlations among various behaviors of parts of the system
in order for a plan to be legal. One appealing aspect of ATL in this domain is that
compatibilities can be elegantly depicted using an intuitive graphical notation
(see Figure 1), that allows planning specialists to develop surprisingly large and
complex specifications in a short time.

Example 1. We use McCarthy’s classic monkey/banana planning problem as a
running example. A monkey is at location “x”, the banana is hanging from the
tree. The monkey is at height “Low”, but if it climbs the tree then it will be at
height “High”, same as the banana. Available actions are: “Going” from a place
to another, “Climbing” (up) and “Climbing Down”, and “Grabbing” banana.
Attributes. BANANA has one state variable “Banana-sv” saying if the monkey
has the banana or not. LOCATION has one variable “Location-sv” for the loca-
tion of the monkey. ALTITUDE has one variable “Altitude-sv” for the height.

CAV'06, LNCS 4144, pp 263-277, 2006

Compatibilities. Now we can consider some compatibilities for the intervals
corresponding to these attributes, also depicted in Figure 1:

– Have-banana (“Hb”) requires Grabbing-banana (“Gb”) which requires Not-
have-banana (“Nhb”). Grabbing-banana is performed while High and At(tree).

– At(tree) (“@(tree)”) requires going from the location “x” to the tree which re-
quires At(x) (“@(x)”). Going(x,tree) (“G(x, tree)”) is performed while Low.

– High (“H”) requires Climbing (“C”) which requires Low (“L”), and Climbing-
Down (“CD”) requires High. Climbing is performed while At(tree).

These compatibilities can be formally specified in ATL as follows:

Meets(Nhb, Gb) ∧ Meets(Gb, Hb) ∧ During(Gb, @(tree))∧ During(Gb, H) ∧
Meets(@(x),G(x, tree))∧Meets(G(x, tree),@(tree))∧During(G(x, tree), L)∧
Meets(L, C)∧Meets(C, H)∧Meets(H,CD)∧Meets(CD, L)∧During(C, @(tree)).

Let us consider the subformula consisting of the first four conjuncts above (first
line), and suppose that an unexpected “flying monkey” wants the banana. It
climbs the tree, but it cannot reach for the banana. Being a flying monkey, it
jumps for the banana, grabs it while gliding when it is still High and At(tree), but
as it glides it leaves the tree location. Supposing that it leaves the tree location
at the same time it changes the status from Grabbing-banana to Have-banana,
one can notice that the third conjunct is violated. Indeed, Gb must hold during
@(tree), meaning that there must be some (non-zero) periods of time in which
the monkey was at the tree location before and after grabbing the banana.

It is often useful to state that some propositions hold all the time or eventually
during an interval. For example, assume one more state predicate, hungry, saying
whether the monkey is hungry or not, and assume that we want to state that
monkeys should grab and have bananas only if they are hungry and do not
already have bananas. This can be done with the following additional conjunct:

Occurs(hungry, Nhb) ∧ Holds(hungry, Gb) ∧ Holds(hungry, Hb) �

There are different views on how intervals should be modeled in different time
flows. A common interpretation is that the intervals are ordered pairs of distinct
points in Q or R. For simplicity, it is convenient to use semantics where intervals
are arbitrary convex non-empty subsets of time points of an arbitrary time flow.

Definition 1. If P is a set of atomic propositions and I is a set of intervals,
then an Allen temporal logic formula over P and I, or an ATL(P , I)-
formula or even just a formula when P and I are understood from con-
text, is any boolean combination of basic formulae of the form Equals(i, j),
Before(i, j), After(i, j), Overlaps(i, j), OverlappedBy(i, j), Meets(i, j), MetBy(i, j),
Contains(i, j), During(i, j), Starts(i, j), StartedBy(i, j), Ends(i, j), EndedBy(i, j),
Holds(p, i), Occurs(p, i), where i, j ∈ I and p ∈ Bool(P).

Bool(P) is the set of boolean propositions over variables in P . Interestingly,
the original formulation of ATL [1] did not include Holds and Occurs; motivated
by practical reasons, they were added later in [4]. To define a formal semantics
of ATL we need to first define an appropriate notion of model.

CAV'06, LNCS 4144, pp 263-277, 2006

Definition 2. Let (T,<) be a strict total order. The relation < is tacitly ex-
tended to a strict partial order on subsets of T , namely X < Y iff x < y for
all x ∈ X and y ∈ Y . Also, by abuse of notation, we may write just x instead
{x}; thus, x < Y means that x < y for all y ∈ Y . For x, y ∈ T let (x, y) be the
set {z ∈ T | x < z < y}. A subset C of T is <-convex, or simply convex, iff
(x, y) ⊆ C for any x, y ∈ C.

In R, for example, the convex sets are precisely the intervals. Recall that
intervals in R can be open or closed on any of their ends, and that they may be
bound by −∞ or +∞ at their left or right ends, respectively.

Definition 3. A (P , I)-interval model (or simply an interval model when
P and I are understood) is a structure M = (T,<, v, σ), where (T,<) is a strict
total order (modeling the intended flow of time), v : P → 2T is a valuation
map assigning to each atomic proposition p ∈ P a set of time points v(p) (in
which the proposition is assumed to be true), and σ is a map that associates with
every interval i ∈ I a non-empty convex subset σ(i) of T . We may also refer to
(P , I)-interval models as models of ATL(P , I).

We are now ready to give the formal semantics of ATL.

Definition 4. An interval model M = (T,<, v, σ) satisfies: Equals(i, j) iff
σ(i) = σ(j); Before(i, j) or After(j, i) iff there is some t ∈ T such that σ(i) <
t < σ(j); Overlaps(i, j) or OverlappedBy(j, i) iff σ(i) ∩ σ(j) 	= ∅ and there are
some ti ∈ σ(i) and tj ∈ σ(j) such that ti < σ(j) and σ(i) < tj; Meets(i, j)
or MetBy(j, i) iff σ(i) < σ(j) and there is no t ∈ T such that σ(i) < t < σ(j);
Contains(i, j) or During(j, i) iff there are some ti, t′i ∈ σ(i) such that ti < σ(j) <
t′i; Starts(i, j) or StartedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such
that tj < σ(i), but there is some tj ∈ σ(j) such that σ(i) < tj; Ends(i, j) or
EndedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such that σ(i) < tj, but there
is some tj ∈ σ(j) such that tj < σ(i); Holds(p, i) iff σ(i) ⊆ v(p); and Occurs(p, i)
iff σ(i) ∩ v(p) 	= ∅ iff ¬Holds(¬p, i). Satisfaction is defined as usual on boolean
combinations of ATL formulae. We use the notation M |=ATL ϕ to denote the
fact that the interval structure M satisfies the ATL formula ϕ.

Therefore, Holds(p, i) is satisfied iff p holds at any time point in i, while
Occurs(p, i) is satisfied iff p holds at some time point in i. The propositions p
used in Holds and Occurs may hold at various random timepoints, so they cannot
be replaced by intervals. The NP-completeness of the satisfiability problem for
ATL without Holds [12] gives us immediately the NP-hardness of our ATL with
Holds above. We will show in the next section that it is actually NP-complete.

In many practical applications of interest, time elapses at a discrete and enu-
merable rate. We next define a variant of Allen temporal algebra in which the
support of the interval models are ω-sequences of time points, that is, linear (in-
finite) sequences t1 < t2 < t3 < · · · < tn < · · ·. We write these strict total orders
compactly as t1t2t3 . . . tn We call the new logic Allen Linear Temporal
Logic (ALTL). Note that ALTL has the same syntax as ATL and its satisfaction

CAV'06, LNCS 4144, pp 263-277, 2006

relation is defined like in ATL, but that its models are structures of the form
M = (t1t2 . . . , v, σ), where t1t2 . . . are ω-sequences of time points and σ maps
intervals in I into non-empty convex sets σ(i) of T = {t1, t2, . . .} (with the ex-
pected strict total ordering < defined as tm < tn iff m < n). It is easy to see
that the convex sets of T are either finite sets of the form {tm, tm+1, . . . , tn} for
some 0 < m ≤ n, or infinite sets of the form {tm, tm+1, . . .} for some 0 < m.

3 Linear Translation of ALTL into LTL

We next define an automatic encoding of ALTL into LTL�. Note that the models
of ALTL differ from those of LTL in that they contain a concrete interpretation
for each interval. Therefore, in order to establish a semantic relationship between
the models of the two logics, we need to first add syntactic support for “intervals”
to LTL. A simple way to do this is to add an atomic propositional symbol ∈i to
the syntax of LTL for each interval i ∈ I, with the intuition that a time point
is in the interval i in a model of ALTL if and only if the proposition ∈i holds in
that time point in the corresponding model of LTL. Moreover, we need to also
capture, via corresponding LTL formulae, the fact that intervals are interpreted
into non-empty convex sets in ALTL models.

Definition 5. Let PI be the set of atomic propositions P ∪ {∈i | i ∈ I} and let
ΨI be the set of LTL formulae {ψi | i ∈ I} over propositions in PI, where ψi is
the formula ♦∈i ∧ ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)) for each i ∈ I.

The following establishes the relationship between models of ALTL and of LTL:

Proposition 1. There is a bijection between (P , I)-interval models and models
of LTL(P ∪ {∈i | i ∈ I}) that satisfy ΨI .

Proof. Let M = (T,<, v, σ) be a tuple where (T,<) is an ω-sequence, v is a map
P → 2T , and σ is a map I → 2T ; what M is missing to be a model of ALTL(P , I)
is the requirements that σ(i) is non-empty and convex for any i ∈ I. Then we
can build a model N = (T,<, u) of LTL(P ∪{∈i | i ∈ I}), where u(p) = v(p) for
all p ∈ P and u(∈i) = σ(i) for all i ∈ I. Conversely, for any model N = (T,<, u)
of LTL(P ∪ {∈i | i ∈ I}) one can build a tuple M = (T,<, v, σ), where v is
the restriction of u to P and σ(i) is defined as u(∈i) for any i ∈ I. What is
left to prove is that σ(i) is non-empty and convex for any i ∈ I if and only if
N |=LTL ΨI . First, note that, for any i ∈ I, σ(i) 	= ∅ is equivalent to N |=LTL ♦∈i.
Second, since σ(i) is convex if and only if there are no time points tm, tn, tk
with 0 < m < n < k such that tm, tk ∈ σ(i) and tn 	∈ σ(i), one deduces that
σ(i) is convex if and only if N |=LTL ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)). Therefore, σ(i) is
non-empty and convex for each i ∈ I if and only if N |=LTL ΨI . �

Definition 6. We let [·] define the bijection above, that is, if M is a (P , I)-
interval model then [M] is the corresponding model of LTL(P ∪ {∈i | i ∈ I})
satisfying ΨI , defined as in the proof of Proposition 1.

We are now ready to define the first part of our syntactic encoding of ALTL
formulae into LTL formulae.

CAV'06, LNCS 4144, pp 263-277, 2006

Definition 7. Let [·] be the function taking formulae ϕ in ALTL(P , I) into
formulae [ϕ] in LTL(P ∪ {∈i | i ∈ I}) defined inductively as follows: [¬ϕ]
is ¬[ϕ]; [ϕ1 ∧ ϕ2] is [ϕ1] ∧ [ϕ2]; [Equals(i, j)] is �(∈i ⇔ ∈j); [Before(i, j)]
and [After(j, i)] are ♦(∈i ∧ ♦(¬∈i ∧ ¬∈j ∧ ♦∈j)); [Meets(i, j)] and [MetBy(j, i)]
are ♦(∈i ∧ ♦∈j ∧ ¬♦(∈i ∧ ∈j) ∧ ¬♦(¬∈i ∧ ¬∈j ∧ ♦∈j)); [Overlaps(i, j)] and
[OverlappedBy(j, i)] are ♦(∈i ∧¬∈j ∧♦(∈i ∧∈j ∧♦(¬∈i ∧∈j))); [Contains(i, j)]
and [During(j, i)] are ♦(∈i ∧ ¬∈j ∧ ♦(∈i ∧ ∈j ∧ ♦(∈i ∧ ¬∈j))); [Starts(i, j)] and
[StartedBy(j, i)] are �(∈i ⇒ ∈j)∧¬♦(∈j ∧¬∈i ∧♦∈i)∧♦(∈j ∧¬∈i); [Ends(i, j)]
and [EndedBy(j, i)] are �(∈i ⇒ ∈j)∧♦(∈j ∧¬∈i)∧¬♦(∈j ∧∈i ∧♦(∈j ∧¬∈i));
[Holds(p, i)] is �(∈i ⇒ p); and [Occurs(p, i)] is [¬Holds(¬p, i)], that is, ♦(∈i∧p).
Example 2. Let us consider again the subformula

Meets(Nhb, Gb) ∧ Meets(Gb, Hb) ∧ During(Gb,@(tree)) ∧ During(Gb, H)
of the formula that characterizes the compatibilities of the monkey/banana prob-
lem (see Example 1), to illustrate how to encode an ALTL formula into an equiv-
alent LTL� one. Its encoding is:

♦(∈Nhb ∧ ♦∈Gb ∧ ¬♦(∈Nhb ∧ ∈Gb) ∧ ¬♦(¬∈Nhb ∧ ¬∈Gb ∧ ♦∈Gb))∧
♦(∈Gb ∧ ♦∈Hb

∧ ¬♦(∈Gb ∧ ∈Hb
) ∧ ¬♦(¬∈Gb ∧ ¬∈Hb

∧ ♦∈Hb
))∧

♦(∈@(tree) ∧ ¬∈Gb ∧ ♦(∈@(tree) ∧ ∈Gb ∧ ♦(∈@(tree) ∧ ¬∈Gb)))∧
♦(∈H ∧ ¬∈Gb ∧ ♦(∈H ∧ ∈Gb ∧ ♦(∈H ∧ ¬∈Gb))) ∧ (

∧
i∈I ψi),

where I = {Nhb, Hb, H,Gb,@(tree)} and ψi is ♦∈i ∧¬♦(∈i ∧♦(¬∈i ∧♦∈i)). As
expected, the LTL encoding of the entire formula in Example 1 is very large. �

The companion report [9] shows a rewriting implementation of this encoding.

Theorem 1. Given an ALTL(P , I) formula ϕ and a (P , I)-interval model M,
then M |=ALTL ϕ iff [M] |=LTL [ϕ].

Proof. Structural induction on ϕ. If ϕ has the form ¬ϕ1 then M |=ALTL ϕ
is equivalent to saying that it is not the case that M |=ALTL ϕ1, which, by the
induction hypothesis and Definition 7, is equivalent to saying that [M] |=LTL [ϕ].
The case where ϕ has the form ϕ1 ∧ ϕ2 is similar. What is left to show is that
the property holds when ϕ is any of the interval relations. Let us discuss only
one of them, for example Meets(i, j). Suppose that M = (T,<, v, σ) and recall
that σ(i) is non-empty for any interval i. By Definition 4, M |=ALTL Meets(i, j)
iff σ(i) < σ(j) and there is so t ∈ T such that σ(i) < t < σ(j). By the way [M] is
built and because ψi and ψj ensure the non-emptiness and the convexity of the
trace fragments in which ∈i and ∈j hold, This is equivalent to saying that ∈j

holds strictly after ∈i, i.e., the ♦(∈i∧♦∈j∧¬♦(∈i∧∈j)∧...); part of [Meets(i, j)],
and that there is no period of time following ∈i that appears before ∈j in which
neither ∈i nor ∈j holds, i.e., the ♦(...¬♦(¬∈i ∧¬∈j ∧♦∈j)) part of [Meets(i, j)].
The result can be proved similarly for the other intervals. �

Our goal next is to reduce the satisfiability problem for ALTL to LTL� sat-
isfiability, known to be an NP-complete problem [11]. Theorem 1 gives us only
half of the result, namely that if a formula ϕ is satisfiable in ALTL then the for-
mula [ϕ] is satisfiable in LTL�. To get the other half, one could define a slightly
different translation of ALTL formulae, namely one that would also include the

CAV'06, LNCS 4144, pp 263-277, 2006

conjunction of the formulae in ΨI . The problem with that is, however, that I
can be infinite, meaning that the generated LTL formula would be infinite. For-
tunately, only the intervals that explicitly appear in ϕ need to be taken into
account, thus making our transformation finite:

Definition 8. For an ALTL(P , I) formula ϕ, let Iϕ be the finite set of intervals
appearing in ϕ and let 〈ϕ〉 be the formula [ϕ]∧∧

ΨIϕ in LTL(P ∪{∈i | i ∈ Iϕ}).
Corollary 1. Given a formula ϕ in ALTL(P , I), the following are equivalent:
(1) ϕ is satisfiable in ALTL(P , I); (2) 〈ϕ〉 is satisfiable in LTL(P∪{∈i | i ∈ Iϕ});
and (3) 〈ϕ〉 is satisfiable in LTL(P ∪ {∈i | i ∈ I}).
Proof. Since a model over more atomic propositions can be also regarded as a
model over fewer propositions, it is immediate that 3. implies 2.. By Theorem 1,
any model of ϕ in ALTL(P , I) yields a model of [ϕ] in LTL(P ∪{∈i | i ∈ I}) that
satisfies ΨI . Therefore, 1. implies 3.. To show that 2. implies 1., by Proposition
1 it suffices to show that any model in LTL(P ∪ {∈i | i ∈ Iϕ}) satisfying ΨIϕ
can be extended, by just adding appropriate valuations for the additional atomic
propositions to assure that the satisfaction of ϕ is not affected, to a model in
LTL(P ∪{∈i | i ∈ I}) satisfying ΦI . This can be done many different ways. One
straightforward model extension is to require that each proposition in {∈i| i ∈
I − Iϕ} holds in precisely one (arbitrary) time point.

Corollary 2. The satisfiability problem for ALTL is NP-complete.

Proof. By Corollary 1, an ALTL formula ϕ is satisfiable iff 〈ϕ〉 is satisfiable as an
LTL formula. Since 〈ϕ〉 can be generated linearly in the size of the ϕ and since
LTL-satisfiability is NP-complete, ALTL-satisfiability is also NP-complete.

4 Monitoring ALTL

It is known that any monitoring algorithm for LTL-formulae requires space ex-
ponential in the size of the monitored formula [10] in the worst case. Can we
find better monitoring algorithms for ALTL? We first argue empirically that a
blind use of monitoring algorithms for LTL may be unfeasible in large appli-
cations and then propose an ALTL-specific monitoring algorithm which avoids
the exponential-space complexity of monitoring LTL-formulae. More precisely,
we give a monitoring algorithm for ALTL which only requires space (it needs to
store its current state only) that is linear in the size of the input formula and
whose most expensive task is to check the satisfiability of a boolean formula that
is incrementally smaller (in the sense that some of its variables are irreversibly
replaced by true or false) with each event received from the monitored system,
and which initially has precisely the size of the original ALTL formula.

Let us first describe informally the “monitoring problem” for a logic whose
models are (finite or infinite) traces. Given a formula ξ of size n and a “running
system” abstracted by its incrementally emitted events (or abstract states en-
coded by the atomic propositions that “hold” in them) t1, t2, ..., the problem
is to report when a bad prefix is reached, that is, when a finite trace t1t2..tm

CAV'06, LNCS 4144, pp 263-277, 2006

is encountered such that there is no infinite trace t1t2...tmtm+1... that satisfies
ξ. We here assume that storing the events is not an option, because their num-
ber can grow arbitrarily large. Indeed, m can be large enough so that even an
algorithm that is linear in the continuously increasing execution trace at each
emitted event (e.g., one that traverses the trace backwards, like the one in [10])
can become easily more impractical than one just exponential in the formula but
constant in the trace (e.g., when one generates an automata monitor from it,
like in [3]). One can (non-trivially) formalize the monitoring problem for a logic
as a decision problem, but this is rather intricate and beyond our scope here.
Here we limit ourselves to the informal problem description above and conclude
that ALTL-monitoring is asymptotically as expensive as ALTL-satisfiability:

(a) in any logic, monitoring is a harder problem than satisfiability;
(b) for any ALTL-formula ξ, we give a monitoring algorithm which is not

more expensive than checking the satisfiability of ξ.
One can readily see that monitoring is harder than satisfiability: a monitor

for ξ reports violation on the empty trace iff ξ is not satisfiable. Since ALTL-
satisfiability is NP-complete (Corollary 2), any monitoring algorithm for ALTL
is expected to be worst-case exponential in practice. However, as in many other
similar situations, this does not necessarily mean that the problem of monitoring
ALTL formulae is not practical. We next briefly discuss an immediate algorithm
based on the translation to LTL, and then give an algorithm specific to ALTL
that avoids the complexity of monitoring LTL and which seems quite efficient in
practice. The next section discusses an experiment where the ALTL formula is
large enough that the LTL-based monitoring algorithms cannot handle it.

The transformation in Section 3 suggests using a general purpose monitoring
algorithm for LTL (e.g., the one in [3]), to monitor the LTL formula obtained
linearly from the ALTL formula. We have experimented with this technique and
have succeeded to generate, unfortunately huge, LTL monitors only for relatively
small ALTL formulae. For example, for the ALTL formula in Example 2, which is
a subformula of the ALTL formula in Example 1, the generated monitor had more
than 60,000 edges, while the algorithm ran out of memory trying to generate
an LTL monitor for the entire ALTL formula in Example 1; and that is just
a toy example. The reason for our failure to generate monitors following this
approach is the intermediate Büchi automata generator from LTL formulae; the
LTL monitors in [3] are obtained pruning the corresponding Büchi automata
(which can be exponential), by removing portions of them related to liveness –
only the safety fragment of a formula is monitorable. The interested reader is
encouraged to check [9] for more details on this unsuccessful approach.

We next give a monitoring algorithm for ALTL not based on general moni-
toring algorithms for LTL. The idea is to regard the ALTL formula ϕ as a boolean
proposition in which the interval relations are regarded as special “dynamic” vari-
ables. For each interval relation we generate a little state machine, which has
two special states, true and false. These state machines are shown in Figure 2.
We also add a top-level conjunct consisting of precisely one special variable for
each interval that appears in ϕ; these latter variables correspond, intuitively, to
the formulae ψi in Definition 5. The monitoring algorithm works as follows: (1)

CAV'06, LNCS 4144, pp 263-277, 2006

ψi Equals(i, j) Before(i, j)

�������	
i

¬∈i �� ∈i ���������	i
∈i��

¬∈i
��

��

����
��

i

¬∈i
��

∈i �� false

������i, j

¬∈i∧¬∈j �� (∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)��

∈i∧∈j
��

false

������i, j

∈i∧∈j
��

(∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)���

		���

¬∈i∧¬∈j
�� true

������i, j

¬∈i∧¬∈j �� ∈j ��

∈i∧¬∈j
��

false

������i, j

∈i∧¬∈j
��

∈i∧∈j����

����

¬∈i∧¬∈j
�� true

Meets(i, j) Overlaps(i, j) Contains(i, j)

������i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j
��

false

������i, j

∈i∧¬∈j
��

(∈i ∧ ∈j)∨
(¬ ∈i ∧¬ ∈j)���

���

¬∈i∧∈j
�� true

������i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j
��

false

������i, j

∈i∧¬∈j
��

¬∈i����

�������

∈i∧∈j ��
������i, j

∈i∧∈j
��

¬∈j

��

¬∈i∧∈j
�� true

������i, j

¬∈i∧¬∈j��
∈j ��

∈i∧¬∈j
��

false

������i, j

∈i∧¬∈j
��

¬∈i����

�������

∈i∧∈j ��
������i, j

∈i∧∈j
��

¬∈i

��

∈i∧¬∈j
�� true

Starts(i, j) Ends(i, j) Holds(p, i)

������i, j

¬∈i∧¬∈j ��
(∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)

��

∈i∧∈j
��

false

������i, j

∈i∧∈j
��

¬∈j

�����������
¬∈i∧∈j

�� true

������i, j

¬∈i∧¬∈j��
∈i ��

¬∈i∧∈j
��

false

������i, j

¬∈i∧∈j
��

¬∈j����

������

∈i∧∈j ��
������i, j

∈i∧∈j
��

(∈i ∧¬ ∈j)∨
(¬ ∈i ∧ ∈j)

��

¬∈i∧¬∈j
�� true

�������	i
¬∈i �� ∈i∧¬ρ ��

∈i∧ρ

��

false

�������	i
∈i∧ρ

∈i∧¬ρ

���������
¬∈i

�� true

Fig. 2. State machines are run synchronously by the monitor with each event.

generate all the state machines in Figure 2 (left-top state is initial); (2) let ξ be
the boolean proposition obtained from ϕ as above; (3) run a boolean satisfiability
checker on ξ and stop with “error” if ξ not satisfiable; (4) otherwise, for the next
event t received from the monitored system, run all the state machines one step
according to t (take that deterministic edge which is satisfied by t); (5) modify
the formula ξ by replacing each variable whose corresponding state machine is
in a state true or false by the corresponding truth value; (6) goto step (3).

Let us briefly discuss the state machines. The ones for ψi ensure that intervals
are contiguous (convex); some intervals can be unbounded. The next seven state
machines correspond to the relations on intervals. Let us discuss the one for
Meets(i, j). One starts with the initial state �������	i, j (neither in i nor in j), and
there it stays as far as one does not enter any of the intervals. If while in this
state the monitored program enters the interval j, that is, if ∈j holds, then the
relation Meets(i, j) is obviously violated (interval i cannot be empty). Otherwise,
if the interval i but not j is entered, then the machine moves to state �������	i, j where
it waits until either i is left and j is entered in which case it returns true, or
otherwise until i is left without entering j or i and j overlap, when it returns
false. The machine for Holds(p, i) checks that p holds during the interval i.

Example 3. Let us consider again the monkey/banana formula in Example 2,

CAV'06, LNCS 4144, pp 263-277, 2006

(Meets(Nhb, Gb) ∧ Meets(Gb, Hb) ∧ During(Gb,@(tree)) ∧ During(Gb, H)),
and consider an execution trace which starts with the abstract events t1 = {∈Nb},
t2 = {∈Nb ,∈@(tree)}, t3 = {∈Gb ,∈@(tree),∈H}, t4 = {∈Hb

,∈H}, ..., where an
abstract event formed of a set of atomic propositions is an event in which all
those, and only those propositions hold. This execution trace corresponds to the
“flying monkey” scenario at the end of Example 1.

Let us simulate the execution of the ALTL monitoring algorithm above on
this example. There are nine state machines like in Figure 2 necessary, four cor-
responding to each of the four interval relations and five corresponding to each
interval appearing in the formula. The boolean formula ξ is just a conjunction
of the corresponding nine variables. All one needs to do is to run the nine state
machines on the execution trace, update the boolean proposition and then check
for satisfiability after each event. After the first three events, the five ψi formulae
will be in some intermediate (not false) states, and the four machines corresond-
ing to the interval relations will be in the states true, (Gb, Hb), (@(tree), Gb),
and (Gb, H), respectively, so the formula is still satisfiable. However, when the
event t4 is processed, the machine corresponding to During(Gb,@(tree)), or to
Contains(@(tree), Gb), transits to false, invalidating the boolean proposition. �

Example 4. Consider now the ALTL formula ¬Before(i, j) and a two-event trace
{∈i}{}. The monitoring algorithm above sets the machine corresponding to
Before(i, j) to state �������	i, j after processing {∈i} and then to state true after pro-
cessing {}, causing the monitor to report “error” before any event containing ∈j

is seen. Note that {∈i}{} is indeed a bad prefix for ¬Before(i, j) (∈j must hold
eventually in any interval model of ALTL). Therefore, our monitoring algorithm
for ALTL detects bad prefixes as soon as they appear. �

Note that the state machines corresponding to ψi will intercept any violation
of the convexity of intervals. If any of the convexities of intervals is violated, that
is, if an interval starts, then it is interrupted and then started again, then the
monitoring algorithm above returns “error”, because the observed trace cannot
even be continued into an interval model; one can easily modify the algorithm
to return a different type of error in such situations. Note also that these state
machines for ψi do not have a true state: there is no way to decide by means
of monitoring that ψi holds, because this is a property of an infinite trace;
by monitoring, one can only detect the safety fragment of the inherent ALTL
property “intervals are non-empty and convex”, namely the break of their con-
vexity. Therefore, the formulae ψi can only detect violations of the monitored
formula: their corresponding variables can only be transformed into false, never
into true. If in a particular application there are external factors implying the
well-formedness of intervals, then one can drop the variables (and the machines)
corresponding to ψi (and thus be able to also detect formula validations online).

Theorem 2. The monitoring algorithm for ALTL above is correct.

Proof. Thanks to the machines corresponding to ψi, we can assume the well-
formedness of intervals in the proof. Consider some finite trace τ = t1t2...tm

CAV'06, LNCS 4144, pp 263-277, 2006

that is well-formed wrt intervals, i.e., it can be the prefix of some interval model
of ALTL. Let us first prove that for any interval relation, its corresponding state
machine is in state false after processing τ iff τ is a bad prefix of that interval
relation. We only show it for one relation, say Before(i, j); the others are similar.
Note that τ is a bad prefix of Before(i, j) iff τ contains (some event satisfying)
∈j before or at the same time with ∈i. Since the state machine of Before(i, j)
reaches the state false iff ∈j is seen before inj or if ∈j and ∈i are seen together
as part of an event, and since the machines corresponding to ψi ensure the
contiguity of intervals, we can conclude that τ is a bad prefix of Before(i, j) iff
the corresponding machine of Before(i, j) is in state false after processing τ .

Let us next prove that for any interval relation, the corresponding machine is
in state true after processing τ iff τ is a good prefix of that relation, in the sense
that for any infinite trace φ such that τπ is an interval model of ALTL, it is the
case that τπ satisfies that relation. As above, let us just prove it for Before(i, j).
Note that the machine of Before(i, j) can be in state true after processing τ iff
τ contains no event satisfying ∈j and contains some event satisfying ∈i followed
by one which does not satisfy ∈i. This is equivalent to saying that any interval
model of the form τπ (recall that intervals have non-empty interpretations in
interval models) satisfies Before(i, j).

Let us now consider any ALTL formula ϕ and a finite trace τ as above such
that the ξ formula maintained by the algorithm is satisfiable after processing τ .
If ϕ has the form ϕ1 ∧ϕ2 then τ is a bad (good) prefix of ϕ iff it is a bad (good)
prefix of ϕ1 or (and) ϕ2. If ϕ has the form ¬ϕ1 then τ is a bad (good) prefix of
ϕ iff it is a good (bad) prefix of ϕ1. Therefore, in order to test whether τ is a
bad prefix of ϕ one only needs to know whether it is a bad prefix of ϕ’s interval
relations, that is, if their corresponding state machines are in their corresponding
false or true states after processing τ . The satisfiability checking of ξ after each
event ensures that violations are reported as early as possible. �

If one is not interested in reporting ALTL property violations as early as
possible, then one can run the satisfiability checker less frequently, say once
every 100 events, or even just once at the end of the monitoring session, and thus
significantly reduce the runtime overhead. If minimal runtime overhead is highly
desirable, since the formula ξ to check for satisfiability changes incrementally
by irreversibly transforming some of its variables into true or false, to achieve a
minimal runtime overhead one can use an incremental SAT solver.

5 Experiment

Implementation. We have implemented a prototype monitor generation tool,
called ALTL2Monitor. It implements the monitoring algorithm presented in the
previous section using the SAT solver zChaff [7] for satisfiability checking.
Case Study. Our case study is a simplified version of an exploration rover
(Gromit, at Nasa Ames). The mission of the robot is to visit a number of way-
points, into an initially unknown rough environment, while monitoring interest-
ing targets on its path. The robot continuously takes pictures of the terrain in

CAV'06, LNCS 4144, pp 263-277, 2006

idleshotidle shot idle shot idle shot

idle idle idlescorrel scorrel scorrel

idle idle idleread read readfuse fuse

idle idleidletrack track

idle ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts

CAMERA

camera−sv

SCORREL

scorrel−sv

LANE

lane−sv

P3D

p3d−sv

RFLEX

speed−sv

SCIENCE

science−sv

meets During

picture science monitormonitor

Fig. 3. Partial Gromit Model: Attributes and compatibilities

front of it, performs a stereo correlation to extract a cloud of 3D points, merges
these points in its model of environment and starts this process again. In paral-
lel, it continuously considers its currents position, the next waypoint to visit, the
obstacles in the model of the environment built and produces a trajectory. These
two interdependent cyclic processes are synchronized. Last, a third process in-
terrupts whenever an interesting rock has been detected. The functional layer of
Gromit is implemented using functional modules (for more details see [6]). For
each of them we shall consider the “visible” state variables of interest:
- Rflex is the module interfaced with the low-level speed controller. It has a
state variable for the position of the robot, each interval representing a specific
robot position, and another one for the speed passed to the wheels controller.
- Camera shoots a pair of stereo calibrated images and saves them. It has one
state variable representing the camera status (taking picture, or idle).
- SCorrel produces and stores a stereo correlated image. It has a state variable
representing the Scorrel process (performing stereo correlation, or idle).
- Lane builds a model of the environment by aggregating clouds of 3D points
produced by Scorrel. It services two requests: read in an internal buffer and
fuse the read. Lane has one state variable for the model building process.
- P3D is a rover navigation software. It produces an arc trajectory which is
translated in a speed reference, to try to reach a waypoint. P3D has a variable
for its state (idle or computing the speed) and one for the waypoints to visit.
- Science. This module monitors a particular condition of interest to scientist
(such as detecting a rock with particular features). When such a condition arises
while the robot is moving toward a waypoint, it stops and takes a picture of the
rock. It has one state variable for its state (monitoring interesting rock or idle).

Figure 3 shows some temporal relations representing a simplified version of
the actual Gromit Rover.
Results. Due to intellectual property restrictions, we did not have access to the
execution platform of the Gromit Rover. However, the CNRS Laboratory LAAS
(at Toulouse, France) provided1 us with a file formalizing some of the compat-

1 We warmly thank Felix Ingrand for help.

CAV'06, LNCS 4144, pp 263-277, 2006

ibilities as an ATL formula of more than 100 interval relations, as well as with
a set of one hundred traces generated by Gromit Rover execution platform. We
applied our prototype ALTL2Monitor off-line to check these traces; the checking
took negligible time. However, the satisfiability checker was applied only once at
the end of the monitoring session of each trace, because we expected the traces
to be correct, which was indeed the case.

6 Conclusion

We presented Allen linear temporal logic (ALTL), an automated translation of
ALTL into LTL, a monitor synthesis algorithm for ALTL, as well as a real-life
experiment. While LTL can be a suitable logic for AI and planning, we also
believe that ALTL can be a suitable logic for certain program verification efforts.
Its simplicity, neutrality and visual interpretation cannot be ignored. We plan
to apply our ALTL monitoring prototype to the autonomous embedded system
iRobot ATRV of the LAAS Laboratory.

References

1. J. Allen. Towards a general theory of actions and time. Artificial Intelligence,
23(2):123–154, 1984.

2. D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about actions and
planning in LTL action theories. In KR, pages 593–602, 2002.

3. M. D’Amorim and G. Roşu. Efficient monitoring of omega-languages. In CAV’05,
volume 3576 of LNCS, pages 364–378. Springer, July 2005.

4. M. Ghallab and A.M. Alaoui. Managing efficiently temporal relations through
indexed spanning trees. In IJCAI, pages 1297–1303, 1989.

5. A.A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. J. ACM, 50(5):591–640, 2003.

6. S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila.
Autonomous rover navigation on unknown terrains, functions and integration. In-
ternational Journal of Robotics Research, 2003.

7. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Design Automation Conference (DAC’01), June 2001.

8. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, New York, 1977. IEEE.

9. G. Roşu and S. Bensalem. Allen linear (interval) temporal logic – translation to
LTL and monitor synthesis. Technical Report UIUCDCS-R-2006-2681, University
of Illinois at Urbana-Champaign, January 2006.

10. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification. J.
of Automated Software Engineering, 12(2):151–197, 2005.

11. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

12. M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for
temporal reasoning: a revised report. In Readings in Qualitative Reasoning about
Phisical Systems. Morgan Kaufmann, Los Altos, CA, 1989.

CAV'06, LNCS 4144, pp 263-277, 2006

