
IF Tutorial
1

SPIN workshop
April 2, 2004

IF TutorialIF Tutorial

Laurent MOUNIERIulian OBER
Susanne GRAFMarius BOZGA

VERIMAG
Distributed and Complex Systems Group

www-verimag.imag.fr/PEOPLE/async/IF/

IF Tutorial
2

SPIN workshop
April 2, 2004

motivation – language – tools – case studies - perspectives

model based developmentmodel based development

Early detection of problems,
concerning functional and non
functional aspects
model-based simulation, testing
and verification

Goal

Context
Telecommunication protocols,
Real-time embedded systems,

Distributed systems,
Scheduling problems,…

IF Tutorial
3

SPIN workshop
April 2, 2004

motivation – language – tools – case studies - perspectives

approach: build on the existingapproach: build on the existing
User level
modeling and
CASE tools (SDL,
UML, SCADE, …)

Semantic model (state graph)

simulation
test

verification1
verification2

verification3

Optimisation and abstraction

Translation to a intermediate language,
rich enough for modeling and for validation

state
explosion

IF Tutorial
4

SPIN workshop
April 2, 2004

motivation – language – tools – case studies - perspectives

approach: build on the existingapproach: build on the existing

LOTOS

Semantic model (state graph)

simulation
test

verification1
verification2

verification3

Optimisation and abstraction

guarded commands

CADPCADP

IF Tutorial
5

SPIN workshop
April 2, 2004

motivation – language – tools – case studies - perspectives

approach: build on the existingapproach: build on the existing

Semantic model (state graph)

Optimisation and abstraction

Timed automata

KronosKronos

verification2
verification1

IF Tutorial
6

SPIN workshop
April 2, 2004

challengechallenge
motivation – language – tools – case studies - perspectives

A good intermediate representation
• Sufficient expressiveness: allows to map

concepts of diverse modeling languages
(asynchronous, synchronous, timing,…)

• Enough concepts: structured representation of
– Concepts existing in validation tools
– Concepts exploitable for more efficient validation

• Allows semantic fine tuning: allows expression of
alternative options of semantic variation points:
time progress, execution and interaction
modes,…

IF Tutorial
7

SPIN workshop
April 2, 2004

overviewoverview

• Motivation and challenge
• IF: the language concepts

– Functional aspects
– Non-functional aspects

• IF: the toolset
– Core components
– Model-based validation
– Front-end tools

• Demos
• Case studies
• Perspectives

IF Tutorial
8

SPIN workshop
April 2, 2004

motivation – language – tools – case studies - perspectives

perspectivesperspectives

• UML-based methodology for real-time systems
– component-based modeling
– combination asynchronous and synchronous systems
– relate functional and non-functional aspects

• improve verification and test generation methods
– more static analysis, abstraction and constraint propagation
– more compositional verification methods
– better diagnostics facilities

• more connections
– connections with performance evaluation tools

IF Tutorial
1

SPIN workshop
April 2, 2004

The IF LanguageThe IF Language

Functional Part

IF Tutorial
2

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

IF SpecificationIF Specification
System description : 3 axes

Processes

IF extended timed automata
(non-determinism, dynamic creation)

Data

predefined data types
(basic types, arrays,
records)

abstract data types

Communications
asynchronous channels
shared variables

IF Tutorial
3

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

execution modelexecution model

• A process instance:
– executes asynchronously with other instances
– can be dynamically created
– owns local data (public or private)
– owns a private FIFO buffer

• Inter-process communications:
– asynchronous signal exchanges (directly or via signalroutes)
– shared variables

⇒ semantics can be expressed by an (infinite) LTS

IF Tutorial
4

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

system structuresystem structure

const N1 = … ; // constants
type t1 = … ; // types

signal s2(t1, t2), // signals

// signalroutes
signalroute sr1(1) … // route attributes

from P1 to P3

// processes
process P1(N0)

… // data + behaviour
endprocess;

…
process P3(N3)

…
endprocess;

P3(N3)

P2(N2)

signal

…

…

…

parameter

sr(1)

…

process
s1(t1)(N1 initial

instances)

P1(N1)

s2 (t1, t2)

…

signalroute
local data

IF Tutorial
5

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

exampleexample

server(NS) clients(NC)grant, fail(reason)

req(file,status)

stop
aborts0

s1

s2

fail(reason)

update(file)

const NS= … , NC= … ;
type file= … , status= … , reason= … ;

signal stop(), req(file, status), fail(reason), grant(), abort(), update(data);

signalroute s0(1) #multicast
from server to clients with abort;

signalroute s1(1) #unicast #lossy
from server to clients with grant,fail;

signalroute s2(1) #unicast
from clients to server with req;

process server(NS) … endprocess;
process clients(NC) … endprocess;

IF Tutorial
6

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

processprocess
IF processes = timed, hierarchical, finite-state automata with actions

s2

s1

s3

s0

s4

t1

t4

t5

t3t2

local data + local clocks

s41

s42

t6 t7

process P1(N1);
fpar … ;

// types, variables, constants, procedures

state s0 … ;
… // transition t1

endstate;

state s1 …;
… // transitions t2, t3

endstate;

… // states s2, s3, s4
endprocess;

local data

state

outgoing transitions

parameters

P1(N1)

IF Tutorial
7

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

statestate
state id attributes

state waiting #start
save abort, update;

…
…
…

endstate;

deferred signals set

nested sub-states

the consumption of these signals
Is (temporarily) postponed
(to control the queuing policy)

outgoing transitions

attributes:
• #start
• #stable | #unstable

interleaving between processes can
happen only on #stable states

(to control transition atomicity)

IF Tutorial
8

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

transitiontransition
transition = deadline + optional trigger + statement list

statement = data assignment
message emission,
process or signalroute creation or destruction, …

state s0
…

deadline eager
provided x!=10;
when c2 >= 4;
input update(m);

….
nextstate s1;
…
endstate;

signal consumption
from the process

buffer

statement list

discrete guard

deadline s2t1s0

atomic !

t2s1

unstable

sequential. conditional, or
iterative composition

t1
timed guard

= trigger

IF Tutorial
9

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

types and datatypes and data
Variables:

• are statically typed (but explicit conversions allowed: {t1}(x))
• can be declared public (= shared), or not …

Predefined basic types: integer, boolean, float, pid, clock

⊇ {self, nil}

Predefined type constructors:
• (integer) interval: type fileno = range 3..9;
• enumeration: type status= enum open, close endenum;
• array: type vector= array[12] of pid
• structure: type file = record f fileno; s status endrecord;

Abstract Data Type definition facilities …

IF Tutorial
10

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

signal exchangesignal exchange
Signal emission:

to a specific process: output req (3, open) to {server}(2);

via a signalroute: output req(3, open) via {s0}(1);

mixed: output token via {link}(1) to {client}(k+1)%N;

parameters

signalroute

pid expressionsignal

pid expression

Signal consumption:

input req (f, s); formal parameters

k={integer}(self)

blocking if no req signal in top of the process buffer …

IF Tutorial
11

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

signal routessignal routes
signal route = process to process communication channel with attributes,

can be dynamically created

attributes:
• queuing policy: fifo | multiset
• reliability: reliable | lossy
• delivering policy: peer | unicast | multicast
• delaying policy: urgent | delay[l,u] | rate[l,u]

signalroute s1(1) #unicast #lossy
from server to clients with grant, fail;

initial instance number
signal set

route
name

attributes

endpoints

IF Tutorial
12

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

delivering policiesdelivering policies

peer

to one
specific
instance

client(1)

server(0)

client(0) client(2)

server(0)

client(1)

unicast multicast

server(0)

client(0) client(1) client(2)

to all instancesto a randomly
chosen
instance

IF Tutorial
13

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

example: ABPexample: ABP

Transmitter Receiver
sdt get

ack

put

type data = range 0 .. 3;

signal get(data), put(data), ack(boolean), sdt(data, boolean);

signalroute tr(1) #unicast #lossy
from transmitter to receiver with sdt;

signalroute rt(1) #unicast #lossy
from receiver to transmitter with ack;

process transmitter(1) … endprocess;
process receiver(1) … endprocess;

IF Tutorial
14

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

transmittertransmitter
process transmitter(1);

var t clock;
var b boolean;
var c boolean;
var m data;

state start #start ;
task b := false;

nextstate idle;
endstate;

state idle;
input put(m);

output sdt(m, b) via {tr}0;
set t := 0;
nextstate busy;

endstate;

initialization

local data

message
transmission

state busy;
input ack(c);

nextstate q8;
when t = 1;

output sdt(m, b) via {tr}0;
set t := 0;

nextstate busy;
endstate;

state q8 #unstable ;
provided c = b;

task b := not b;
reset t;

nextstate idle;
provided c <> b;

nextstate busy;
endstate;
endprocess;

ack recepion

timeout:
retransmission

incorrect ack

correct ack

IF Tutorial
15

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

receiverreceiver

state idle;
input sdt(m, c);

if b = c then
output ack(b) via {rt}0;
output get(m);
task b := not b;

else
output ack(not b) via {rt}0;

endif
nextstate idle;

endstate;

endprocess;
message reception

process receiver(1);

var b boolean;
var c boolean;
var m data;

state start #start ;
task b := false;

nextstate idle;
endstate;

initialization

IF Tutorial
16

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

dynamic creationdynamic creation
• remote process/signalroute creation:

• process/signalroute destruction:

kill {client} (2)

kill p pid expression

the instance is destroyed,
together with its buffer,
and local data

p := fork client (true)

parameters

a new instance is
created

pid of the newly
created instance

process name

the “self” instance is
destroyed, together with
its buffer, and local data

• process termination:
stop

IF Tutorial
17

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

exampleexample
server(NS) client(0)

done(pid)req

const NS = …, Max = … ;
signal done(pid);
signal req ();

signalroute cs(1)
from client to server with done;

process client(0);
fpar parent pid;

state init #start ;
informal "work";
output done(self) via {cs}0 to parent;
stop;

endstate;
endprocess;

dies when work
is finished

process server(1);
var i integer;
var x pid;

state idle #start ;
provided (i < Max);
input req ();

x := fork client(self);
task i := (i + 1);
nextstate idle;

input done(x);
task i := (i - 1);
nextstate idle;

endstate;
endprocess;

creates a new
clientreceives a new

request

a work is done

IF Tutorial
18

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

nested statesnested states
Several kinds of transitions …

• t0 = s0 → s5
s2

s0

s1

s5

s3

s7

s6

s4t1

t5

t2

t6

t7

t3

t0

t4

initial

• t1 = current_state → s1

• t4 = current_state → current_state
or
t4 = current_state -> s5

• no parallelism inside a state
• essentially a macro-notation

IF Tutorial
19

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

ADTADT
Use of Abstract Data Types:

type sqn = range 0.. N;

type sqnSet = abstract

sqnSet Empty();

sqnSet Insert(sqnSet, item);

boolean isIn (sqnSet, item)

endabstract; IF

#typedef unsigned if_sqn_set_type;
#define if_sqn_set_copy(x,y) (x)=(y)
#define if_sqn_set_compare(x,y) (x)-(y)
#define if_sqn_set_print(x,f) fprintf(f,"%#x",x)
#define if_sqn_set_reset(x) (x)=0

if_boolean_type if_isIn_function(if_sqn_set_type p1,if_integer_type p2)
{return (p1 & (1 << p2)) ? if_boolean_true : if_boolean_false;}

if_sqn_set_type if_Insert_function(if_sqn_set_type p1,if_integer_type p2)
{ return p1 | (1 << p2);}

if_sqn_set_type if_Empty_function()
{ return 0;} C/C++

At the IF level only
the signature is

required … … but a concrete C/C++ implementation must be
provided to use the simulation tools

IF Tutorial
20

SPIN workshop
April 2, 2004

system – process – communication – example – extensions

external codeexternal code
C++ procedures can be used to describe data transformations:

type SystemStatusType = array [NFILES] of FileControlBlockType;

type FileControlBlockType = array [NUSERS] of boolean;

var updating SystemStatusType;

const NUSERS = 5, NFILES = 10;

type UserIdType = range 0 .. NUSERS;

type FileIdType = range 0 .. NFILES;

procedure File_Available_For_Write;

fpar in f FileIdType, in u UserIdType, in systemStatus SystemStatusType;

returns boolean;

{# /* true if nobody is updating, maybe except u */

int uprime, result=1 ;

for (uprime=0; uprime<if_NUSERS_constant; uprime++)

result &= (uprime==u || ! updating[f][uprime]);

return result;

#}

endprocedure;

Checks if for all u’.
updating[u’][f]

implies u’<>u

IF Tutorial
21

SPIN workshop
April 2, 2004

The IF LanguageThe IF Language

Non-functional Part

IF Tutorial
22

SPIN workshop
April 2, 2004

time – resources – priorities

time in system executiontime in system execution
• the model of time [timed automata with urgency]

– centralized → same clock speed in all processes
– passes in stable states → transitions are instantaneous
– depends on the system state → precisely timed behavior

time = 0
q0

t1

t2

q1 q2

δ0(q2)

q3
time = δ0

q4

δ1(q4)

q5
time = δ0 + δ1

…

P1

P2

P3

Pk

…

sy
st

em
 c

on
fig

ur
at

io
n

IF Tutorial
23

SPIN workshop
April 2, 2004

time – resources – priorities

specifying timed behaviorspecifying timed behavior
Send

none

SDT(m,b)

SET (t_repeat)

Wait_Ack

Wait_Ack

ACK(c) t_repeat

state send;
output sdt(self,m,b) to {receiver}0;
set t_repeat := - dt_repeat;
nextstate wait_ack;

endstate;
state wait_ack;
input ack(sender,c);
…
when t_repeat = 0;
…

endstate;

• real-valued clocks
– operations : set, reset (deactivate)

• timed guards
– comparison of a clock to an

integer
– comparison of a difference of two

clocks to an integer

IF Tutorial
24

SPIN workshop
April 2, 2004

time – resources – priorities

linking time and system progresslinking time and system progress

• 3 types of urgency for time-guarded transitions
– eager transitions : urgent as soon as they are enabled

block time progress
– lazy transitions : never urgent

always allow time progress
– delayable transitions : urgent when about to be disabled by time progress

allow time progress otherwise
process channel;
state get;

input SDT(p,q,r);
nextstate forward;

endstate;
state forward;

deadline delayable;
when x >= a and x <= b;

output SDT(p,q,r)
nextstate get;

endstate;

state wait_ack;
…
deadline eager;
when t_repeat = 0;
…

endstate;

state idle;
…
deadline lazy;
input PUT(p) // from ENV;
…

endstate;

IF Tutorial
25

SPIN workshop
April 2, 2004

time – resources – priorities

semantics of urgencysemantics of urgency
q0

q1

x1 3

eager

2

x: clock

q0

q1

1<x<3

x:=2

urgency

x1 32

q0

q1

lazy
x1 32

q0

q1

delayable

IF Tutorial
26

SPIN workshop
April 2, 2004

time – resources – priorities

resourcesresources

• mutually exclusive access to a physical or logical resource by
concurrent IF processes
– acquisition: precondition to a transition – models passive wait
– release: action – executed when resource is not needed any more

resource buffer;
…
state waiting_update;
deadline eager;
acquire buffer;
informal "upd²ate";
set x_m := 0;
nextstate updating;

endstate;

state updating;
deadline delayable;
when x_m = 10;
informal "updated";
reset x_m;
release buffer;
task ({data}0).updated := true;
nextstate sleeping_m;

endstate;
…

IF Tutorial
27

SPIN workshop
April 2, 2004

time – resources – prioriti

dynamic prioritiesdynamic priorities

• partial priority order between processes based on global state

es

priority_rule : p1 < p2 if condition(p1,p2)

• p1, p2 are free variables ranging over the active process set
• semantics:

among enabled processes, only maximal elements execute
• applications: scheduling policies

– fixed priority: p1 < p2 if p1 instanceof Tx and p2 instanceof Rx

– run-to-completion: p1 < p2 if p2 = ({manager}0).running

– EDF: p1 < p2 if ({task}p2).deadline < ({task}p1).deadline
…

IF Tutorial
1

SPIN workshop
April 2, 2004

IF ToolsetIF Toolset

IF Tutorial
2

SPIN workshop
April 2, 2004

architecture

Objecteering Rational Rose ObjectGeode

UML
AGEDIS

RT/UML
OMEGA

SDL
ADVANCE

aml2if uml2if sdl2if

TReX
IF

Static Analyzer
IF

Specifications
LASH

RMC

IF
Exploration Engine

model
checking

guided
exploration

mincost path
extraction

guided
simulation

TGV based
TC generation

model
construction

ATS
AGEDIS

AUT schedules
AMETIST

SPIDER CADP

IF Tutorial
3

SPIN workshop
April 2, 2004

IF ToolsetIF Toolset UML
AGEDIS

RT/UML
OMEGA

SDL
ADVANCE

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS
AGEDIS

model
construction

AUT

model
checking

guided
exploration

mincost path
extraction

schedules
AMETIST

Objecteering Rational Rose ObjectGeode

CADPSPIDER

IF
Static Analyzer LASH

RMC

TReX

guided
simulation

Core Components
- language API
- exploration API
- simulator design

IF Tutorial
4

SPIN workshop
April 2, 2004

language APIlanguage API
language API – exploration API – simulator design

parser

Abstract Syntax
Tree (AST)

writer

• gives programming
access to the AST of
an IF specification

• AST represented as
a collection of C++
objects

IF specification

AST based
user application

IF specification

IF Tutorial
5

SPIN workshop
April 2, 2004

AST overviewAST overview
language API – exploration API – simulator design

SystemEntity

ProcessEntitySignalroute Procedure

ProcedureVariable State

Transition Constraint

Expression BlockStatement

Action

State

Expression Expression

Expression

Expression

Signal Type

Type

Constraint InputAction Action

IF Tutorial
6

SPIN workshop
April 2, 2004

an example: used variablesan example: used variables
language API – exploration API – simulator design

1. #include "model.h“
2.
3. void main() {
4. IfObject::Initialize();
5. // parse the input
6. IfSystemEntity* sys = Load(stdin);
7. if (sys != NULL)
8. sys->Compile();
9. // for each process...
10. for(int i = 0; i < sys->GetProcesses()->GetCount(); i++) {
11. IfProcessEntity* proc = sys->GetProcesses()->GetAt(i);
12. printf("\n%s:", proc->GetName());
13. // for each local variable...
14. for(int j = 0; j < proc->GetVariables()->GetCount(); j++) {
15. IfVariable* var = proc->GetVariables()->GetAt(j);
16. // find if the variable is used in some state
17. int used = 0;
18. for(int k = 0; k < proc->GetStates()->GetCount(); k++) {
19. IfState* state = proc->GetStates()->GetAt(k);
20. used |= state->Use(var);
21. }
22. if (! used)
23. printf("%s ", var->GetName());
24. }
25. }
26. }

IF Tutorial
7

SPIN workshop
April 2, 2004

applicationsapplications
language API – exploration API – simulator design

• static analysis
– live variables, slicing, dead code

• code generation
– simulation code, application code

• translation
– if2pml (by Eindhoven TU)

• pretty printing
– if2if, if2dot, if2html

IF Tutorial
8

SPIN workshop
April 2, 2004

exploration APIexploration API
language API – exploration API – simulator design

• gives programming access to
the underlying labeled transition
system of an IF specification

• the API provides
– state, label representation

• type definition
• access primitives

– forward traversal primitives
• initial state function (init)
• successor function (post)

• on-the-fly, forward, explicit,
enumerative

specification-
dependent
C/C++ code

exploration platform

generic
exploration
C/C++ code

IF specification

compiler

model-based based
user application

IF Tutorial
9

SPIN workshop
April 2, 2004

LTS representationLTS representation
language API – exploration API – simulator design

states are global (system) configurations
• gray-box structural representation as set of local

(process) configurations (instances)

• the content of each process configurations can
be accessed

– process identifier (pid)

– control state pointer

– queue of pending input signals

– local variables and parameters

labels record observable events
occurring on transitions

• structural representation as a list of events
• each event can be accessed

– issuing process
– event type (INPUT, OUTPUT, FORK, etc.)
– type dependent auxiliary information

Config

Instance Instance
pid
control
queue
variables

pid
control
queue
variables

Label

Event Event
pid
type
…

pid
type
…

IF Tutorial
10

SPIN workshop
April 2, 2004

LTS traversalLTS traversal
language API – exploration API – simulator design

Driver

void explore(Config* p,
Label* a, Config* q) = 0;

engine
driver

Engineinterface class

the user must
implement the

explore method
to handle

successors

concrete class
providing
traversal
functions

Config* start();
void run(Config* p);

engine.run(p)

driver.explore(p,a1,q1) p
driver.explore(p,a2,q2)

driver.explore(p,an,qn) q1

a1 a2 an

q2 qn

IF Tutorial
11

SPIN workshop
April 2, 2004

an example: an example: bfs bfs searchsearch
1. #include "simulator.h“
2.
3. class BfsExplorer : public IfDriver {
4. static const int REACHED = 1; // reachable state marking
5. Queue m_queue; // the queue of unexplored states
6.
7. public:
8. // successor handler: append target state to the queue, if not yet reached
9. void explore(IfConfig* source, IfLabel* label, IfConfig* target) {
10. if (! (target->getMark() & REACHED))
11. { target->setMark(REACHED); m_queue.put(target); }
12. }
13. // visit one state i.e, print it on the screen
14. void visit(IfConfig* state) {
15. state->print(stdout);
16. }
17. // visit all states, main bfs loop
18. void visitAll() {
19. IfConfig* start = m_engine->start();
20. start->setMark(REACHED); m_queue.put(start);
21. while (! m_queue.isEmpty()) {
22. IfConfig* state = m_queue.get();
23. visit(state);
24. m_engine->run(state);
25. }
26. }
27. };

language API – exploration API – simulator design

IF Tutorial
12

SPIN workshop
April 2, 2004

applicationsapplications
language API – exploration API – simulator design

• Debugging
– interactive, random simulation

• Model-checking
– exhaustive model generation
– on-the-fly µ-calculus evaluation
– model exploration with observers

• Testing
– test case generation
– on-the-fly timed testing

• Optimization
– shortest path computation

IF Tutorial
13

SPIN workshop
April 2, 2004

simulator designsimulator design
language API – exploration API – simulator design

• goal: offer primitives to explore the state space
of IF specifications in an exhaustive manner

• main functionalities
– simulate the process execution

• inter-process communication
• process creation / destruction
• control of simulation time

– handle non-determinism
• asynchronous execution
• internal non-deterministic choices
• open environment

– state space representation

IF Tutorial
14

SPIN workshop
April 2, 2004

architecturearchitecture
language API – exploration API – simulator design

dynamic scheduling

asynchronous execution
state space

representation

application specific predefined

(time, channels, etc.)

open
exploration

platform

executable
instances

behavior and
representation

compiler

IF specifications

IF Tutorial
15

SPIN workshop
April 2, 2004

execution controlexecution control
language API – exploration API – simulator design

1st layer : emulate asynchronous parallel execution
– ask in turn each instance to execute its enabled transitions

• ensures atomicity at level of instance transitions
– when an instance is executing provides

• message delivery, shared variable update
• global time constraints check and clocks update
• dynamic instance creation and destruction
• record generated observable events

– get informed when a local step is finished and
• take a snapshot of the global configuration and store it
• send the successor to the 2nd layer (dynamic scheduler)

obtain global (system) steps from local (process) steps

IF Tutorial
16

SPIN workshop
April 2, 2004

execution controlexecution control
language API – exploration API – simulator design

2nd layer: dynamic scheduling
– collect all potential global successors
– filter them accordingly to dynamic priorities

• evaluate each priority constraint
• if applicable on current state

remove successors produced by the low priority instance

– deliver the remaining set to the user application
through the exploration API

IF Tutorial
17

SPIN workshop
April 2, 2004

execution controlexecution control
language API – exploration API – simulator design

step

explore

I1:P2I2:P1 I1:TimeI1:P1 I2:P2 Ik:Pj

active
instances

process 1 process 2 process j time

output

create

set, resetrun

run

dynamic scheduling

asynchronous executionexecution
control

IF Tutorial
18

SPIN workshop
April 2, 2004

simulation timesimulation time
language API – exploration API – simulator design

at simulation, time is a dedicated
process instance handling

• dynamic clock allocation (set, reset)
• represent clock valuations
• check time constraints (timed guards)
• compute time progress conditions
w.r.t. actual deadlines and
• fire time transitions, if enabled

two concrete implementations are
available (other can be easily
added)

i) discrete time
clock valuations represented as
varying size integer vectors

time elapse is explicit and computed
w.r.t. the next enabled deadline

ii) dbm time
clock valuations represented using
varying size difference bound matrices
(DBMs)

time elapse is symbolic

non-convex time zones may arise
because of deadlines: they are
represented implicitly as unions of
DBMs

IF Tutorial
19

SPIN workshop
April 2, 2004

state representationstate representation
language API – exploration API – simulator design

configurations

configuration
chunks

instances

queue contents

messages

state storage is completely
done by the simulator

structural representation
of configurations offering
maximal sharing

unique tables
implemented as hash
tables with collision or
search trees (splay trees
or 2-3 trees)

IF Tutorial
20

SPIN workshop
April 2, 2004

language API – exploration API – simulator design

creditscredits

state space representation BDDs

symbolic time representation and
operations using DBMs

Kronos, Uppaal

simulator architecture i.e, open
platform + running objects

System C

exploration API i.e,
labeled transition system interface

Open/Cæsar

IF Tutorial
21

SPIN workshop
April 2, 2004

IF ToolsetIF Toolset UML
AGEDIS

RT/UML
OMEGA

SDL
ADVANCE

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS
AGEDIS

model
construction

AUT

model
checking

guided
exploration

mincost path
extraction

schedules
AMETIST

Objecteering Rational Rose ObjectGeode

CADPSPIDER

IF
Static Analyzer LASH

RMC

TReX

guided
simulation

Model-Based Validation
- model checking
- test generation
- optimization
- static analysis

IF Tutorial
22

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

using observersusing observers

• specify system properties in an
operational way

• observes
– events
– system state
– time

• states
– normal / error / success

• properties
– linear, timed
– safety/liveness

• semantics
– weakly synchronized composition

(i.e. greater priority than the
system)

match output SDT(void, b)

[b <> ({Rx}0).flag]

t

[b = ({Rx}0).flag]
set x := 0

[x >= t_ack]

match input ACK(void)
[x >= t_ack]w

e

IF Tutorial
23

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

observation and actionsobservation and actions

• state observation
– variables, queues, process-in-state

• event observation
– event types : INPUT, OUTPUT, FORK, KILL, DELIVER, …
– retrieve data related to event

• signal parameters
• created process’ pid…

• actions
– internal : local variables, etc.
– control system simulation/exploration

• cut the exploration
• inject signals, mutate variables

Verification : reachability (safety)

IF Tutorial
24

SPIN workshop
April 2, 2004

µµ--calculus evaluation calculus evaluation
model checking – test generation – optimization – static analysis

• alternating-free fragment
ϕ ::= T | X | <a>ϕ | ¬ϕ | ϕ∧ϕ | µX.ϕ(X)

where a denotes a regular expression on labels
• macros available to describe complex formula e.g,

all ϕ ≡ υX. ϕ ∧ [*]X
pot ϕ ≡ µX. ϕ ∨ <*>X

inev ϕ ≡ µX. ϕ ∨ <*>T ∧ [*]X
• IF toolset includes an on-the-fly local model-checker
• diagnostics can be extracted either as sequences (if the

property is “linear”) or sub-graphs (if the property is
“branching”)

IF Tutorial
25

SPIN workshop
April 2, 2004

behavioral relations behavioral relations
model checking – test generation – optimization – static analysis

• LTS comparison:
– equivalence relations (“behavior equality”):

System ≈ Specification
– preorder relations (“behavior inclusion”):

System ≤ Specification

• LTS minimization:
– quotient w.r.t an equivalence relation:

(System / ≈)

• several relations available:
weak/strong bisimulation, branching, safety, trace equivalence

• use of CADP as back-end:
aldebaran, bcg_min

IF Tutorial
26

SPIN workshop
April 2, 2004

exampleexample
model checking – test generation – optimization – static analysis

reduction w.r.t.
branching bisimulation

IF Tutorial
27

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

the TGV test generation toolthe TGV test generation tool
Conformance testing for distributed applications

TesterIF Specification IUT
conforms to ?

TGV Test Cases

controls

observes
Verdicts

Pass
Fail

Inconclusive

Test Purposes

Two implementations:
– TGV (Irisa/Verimag) for Lotos, SDL, UML and IF
– TestComposer (Telelogic), inside ObjectGeode

IF Tutorial
28

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

principle of TGVprinciple of TGV
IUT

A
D

B

C

ZY
X W

A, C: controlable
B, D, Y: observable
W, X, Z: internal

• System
architecture:

Exhaustive system behaviour
(in terms of A,B,C,D,W,X,Y,Z)

• Specification (IF,…)

• Test purpose: property ?D!A

⇒ TGV computes test cases:
!A

?B

!C ?D
PASS

INC

Y

FAILFAIL

IF Tutorial
29

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

ttest case est case generation generation inin TGVTGV

TP ?D
!A

?B
reject

accept TP || S

INC

PASS

!C

!A

X

?B

Z

W

Y

?D
?C

elim. non observables,
determinize,
eliminate conflicts

S
?C

X

!D
?C

?A
Z

W

Y

!B

A
D

B

C

ZY
X W

!A
?B

!C ?D
PASS

INC

Y

TC

IF Tutorial
30

SPIN workshop
April 2, 2004

model checking – test generation – optimization – static analysis

TGV TGV resultsresults
• advantages of automatic test case generation:

– less error prone
– less time consuming
– applicable to real systems

• problems of automatic test case generation:
– manual tests are symbolic -> less test cases
– detailed formal specification is needed

• AGEDIS IST project (integration of IF/TGV inside a complete
testing framework):
– model specification in UML, translation to IF
– test generation with TGV
– test execution on Java programs with Spider (IBM)

IF Tutorial
31

SPIN workshop
April 2, 2004

optimization optimization
model checking – test generation – optimization – static analysis

• there are (user defined) costs
associated to transitions of the
semantic model of IF specifications
e.g, waiting times

• problem: find the min-cost execution
path leading from the initial state to
some goal state

• three algorithms implemented:
– Dijkstra algorithm (best first)
– A* algorithm (best first + estimation)
– branch and bound (depth-first)

• applications: job-shop scheduling
(find the makespan), asynchronous
circuit analysis (find the maximal

init

goal goal

tick(5)

tick(3)

tick(7)

tick(2)

tick(1)

stabilization time)

IF Tutorial
32

SPIN workshop
April 2, 2004

static analysis static analysis
model checking – test generation – optimization – static analysis

• philosophy
– source code transformations for model reduction
– code optimization methods

• techniques implemented so far
– live variable analysis: remove dead variables and/or reset

variables when useless in a control state
– dead-code elimination: remove unreachable code w.r.t.

assumptions about the environment
– variable abstraction: extract the relevant part after removing

some variables

• usually, impressive state space reduction

IF Tutorial
33

SPIN workshop
April 2, 2004

live variables live variables
model checking – test generation – optimization – static analysis

find live variables
usual backward dataflow analysis extended
to IF communication primitives

asynchronous communication via queues
parameter passing at process creation

live variables are propagated both intra and
inter processes !

a variable is dead in a control point if its
value is not used before being redefined
on any path starting at that point

y := z+2

y := 3*x

?m(x, y)

y not used
here

reset yreset y exploit live variables
transform IF specification by

removing completely dead variables and
signal / process parameters
resetting partially dead variables

the gains are multiple:
drastically reduce the size of the model
(orders of magnitude on realistic examples)
strongly preserve the initial behaviour

IF Tutorial
34

SPIN workshop
April 2, 2004

deaddead--code eliminationcode elimination
model checking – test generation – optimization – static analysis

find dead code
algorithm for static accessibility of control
states and control transitions given user
assumptions about the environment

accessibility propagated both intra- and
inter processes

a part of code is dead if it will never
been entered, for any execution

process P(1) process Q(0) process R(0)

?b

fork R

?c

!afork Q

!c

?a

!b

?b

exploit dead code
transform IF specifications by

removing processes never created
removing signals never sent
removing unreachable control states and
control transitions

the gains are
reduce the size of the specification
enable more reduction by live analysis
strongly preserve the initial behavior, under
the given assumptions

provides only “a” signals to the process P

IF Tutorial
35

SPIN workshop
April 2, 2004

variable elimination variable elimination
model checking – test generation – optimization – static analysis

find undefined variables
forward dataflow analysis propagating the
influence of removing variables

local undefined-ness of variables
global undefined-ness of signal and process
parameters

the propagation is performed both intra-
and inter-processes

abstraction w.r.t. a set of variables
(to eliminate) provided by the user

!b(i)

i:=0

[i<N][i=N]

i:=i+1

i

?b(k)

[k even][k odd]

x:=0x:=x+k

k, x

exploit undefined variables
transform IF specifications by

removing assignments to undefined variables
removing undefined signal and process
parameters
relaxing guards involving undefined variables

obtain a conservative abstraction of the initial
specification i.e, including all the behaviors of
the initial one

!b

?b

x:=0

x

reset x

IF Tutorial
36

SPIN workshop
April 2, 2004

IF ToolsetIF Toolset UML
AGEDIS

RT/UML
OMEGA

SDL
ADVANCE

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS
AGEDIS

model
construction

AUT

model
checking

guided
exploration

mincost path
extraction

schedules
AMETIST

Objecteering Rational Rose ObjectGeode

CADPSPIDER

IF
Static Analyzer LASH

RMC

TReX

guided
simulation

Front-Ends
- sdl2if
- uml2if

IF Tutorial
37

SPIN workshop
April 2, 2004

sdl2if – uml2if

SDL overviewSDL overview
Specification and Description Language

• formal specification language for distributed systems
– concurrent processes (Extended FSM)
– asynchronous buffered communication

• widely accepted in telecommunication area
– ITU standard, revised every 4 years (’88 – ’00)
– development methodologies
– commercial tool support

IF Tutorial
38

SPIN workshop
April 2, 2004

sdl2if – uml2if

SDL conceptsSDL concepts
• hierarchical structuring mechanism

– system, blocks, processes, services (agents)
• high level process description language

– nested states, structured transitions
– various elementary triggers and actions
– procedures

• dynamical features
– process creation and destruction

• timing aspects
– timer concept, global time (now)

• object-oriented features
– parameterization, inheritance

• formal semantics defined in terms of Abstract State Machines
(ASM)

IF Tutorial
39

SPIN workshop
April 2, 2004

sdl2if – uml2if

SDL translationSDL translation
• translation of SDL into IF is straightforward

– direct mapping of SDL elements into IF ones
– at origin, IF was an intermediate representation for SDL

• but there exists some limitations
– hierarchical system decomposition
– procedures and procedures calls
– complex data types
– arbitrary use of now in expressions

IF Tutorial
40

SPIN workshop
April 2, 2004

sdl2if – uml2if

sdl2if sdl2if
sdl2if relies on a full SDL parser
provided by Telelogic AB

several transformations are
applied on the SDL/AST prior to its
translation (i.e, SDL’xx reduced to
SDL’88)

parser

abstract
syntax tree

SDL/API © Telelogic

SDL/PR

sdl2if

IF

IF Tutorial
41

SPIN workshop
April 2, 2004

sdl2if – uml2if

an overview of UMLan overview of UML
OMG’s standard modeling language

• developed since 1998, current versions: 1.4, 2.0
• widely accepted in industry, wide tool support
• complex (10 types of diagrams, ≈150 types of concepts)

– mixes declarative / imperative, OO, synchronous/asynchronous,
aspect oriented, …

– for requirements / design
• informal semantics

Class diagrams State diagrams Sequence diagrams

BeverageMachine

…
…

CofeeUnit

…

BeverageUnit entry/ …

exit/…

[x = 5] / b.prepare()

…

: BM : BU

IF Tutorial
42

SPIN workshop
April 2, 2004

sdl2if – uml2if

language choiceslanguage choices
our focus : real-time and embedded systems (OMEGA)

• cover operational specifications
– classes with operations, attributes, associations, generalization,

statecharts; basic data types
• define a particular execution model

– a notion of active class
– active objects define activity groups
– run-to-completion, group stability

• communication and behavior
– primitive operations – procedural, stacked
– triggered operations – embedded in state machine, queued
– asynchronous signals

• define an Action Language

IF Tutorial
43

SPIN workshop
April 2, 2004

sdl2if – uml2if

translation to IFtranslation to IF
a mapping of OO concepts to (extended) automata

• structure
– class → process type
– attributes & associations → variables
– inheritance → replication of features
– signals, basic data types → direct mapping

• behavior
– state machines (with restrictions) → IF hierarchical automata
– action language → IF actions, automaton encoding
– operations:

• operation call/return → signal exchange
• procedure activations → process creation
• polymorphism → untyped PIDs
• dynamic binding → destination object automaton determines the

executed procedure

IF Tutorial
44

SPIN workshop
April 2, 2004

sdl2if – uml2if

tool architecturetool architecture

Rhapsody

XMI reader UML 1.4
repository

UML 1.4
API

IF 2.0
translator

UML2IFXMI 1.0/1.1
(UML 1.4 +
stereotypes)

Rose

Argo

Objecteering

IF 2.0
TOOLBOX

IF spec

IF Tutorial
45

SPIN workshop
April 2, 2004

sdl2if – uml2if

simulation / verification interfacesimulation / verification interface

• user friendly
simulation

• system state
exploration…

• customizable
presentation
of results for
UML users

IF Tutorial
1

SPIN workshop
April 2, 2004

Case StudiesCase Studies

telecommunication protocols
embedded and distributed software

manufacturing problems
asynchronous circuits

IF Tutorial
2

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

protocolsprotocols
SSCOP

Service Specific Connection Oriented Protocol
M. Bozga et al. Verification and test generation for the SSCOP
Protocol. In Journal of Science of Computer Programming - Special Issue
on Formal Methods in Industry. Vol. 36, number 1, January 2000.

MASCARA
Mobile Access Scheme based on Contention and Reservation for ATM
case study proposed in VIRES ESPRIT LTR
S. Graf and G. Jia. Verification Experiments on the Mascara Protocol.
In M.B. Dwyer (Ed.) Proceedings of SPIN Workshop 2001, Toronto,
Canada. LNCS 2057.

PGM
Pragmatic General Multicast
case study proposed in ADVANCE IST-1999-29082

IF Tutorial
3

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

pragmatic general multicastpragmatic general multicast
protocol specification

Key features
real-time data transmission for multimedia
multicast using tree architecture
generalised sliding window for error recovery
negative acknowledgment
important timing constraints
many parameters (buffer lengths, delays)
SDL specification (~3500 lines)
formalize the IETF draft
developed by France Telecom
translated completely using sdl2if

sender

network
element

network
element

receiverreceiver receiver

outside
application

outside
application

outside
application

outside
application

protocol requirement
any receiver either receives all data packets
from transmissions and repairs or is able to
detect unrecoverable data loss

IF Tutorial
4

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

pragmatic general multicastpragmatic general multicast
sender

network
element

receiver

noise

noise

abstract an
arbitrary number
of receivers abstract an

arbitrary number
of net-elements

model checking
initial model
limited by the size of state space i.e,

the configuration with 1 sender, 1 network
element, 2 receivers, 2 messages sent,
arbitrary loss, has more than 200000 states,
800000 transitions

abstract model
abstract the multicast tree as a linear
structure + noise processes

scenarios with up to 12 messages sent and
arbitrary losses have been considered

safety properties have been verified on the
fully generated state space

an error detected w.r.t. to the transmission and
recovery of the last packet in a sequence

model exchange
PGM models developed in IF have been
exchanged among ADVANCE partners

many other techniques applied on PGM:
symbolic reachability, regular model checking,
parameter synthesis

IF Tutorial
5

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

embedded softwareembedded software
Ariane 5 Flight Program

joint work with EADS Lauchers
M. Bozga, D. Lesens, L. Mounier. Model-checking Ariane 5 Flight
Program. In Proceedings of FMICS 2001, Paris, France.

K9 Rover Executive
S.Tripakis et al. Testing conformance of real-time software by
automatic generation of observers. In Proceedings of Workshop on
Runtime Verification, RV’04, Barcelona, Spain.

IF Tutorial
8

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

distributed applicationsdistributed applications
TCP/ECN Transit Computerization Project

case study proposed in AGEDIS IST-1999-20218

MQ Series Integration Broker
case study proposed in AGEDIS IST-1999-20218

IF Tutorial
9

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

mqmq series integration brokerseries integration broker
specification

lightweight publish/subscribe protocol for
integrating devices with WebSphere
Integration Broker 

Broker
connect
disconnect
publish
subscribe
unsubscribe

modeling
the protocol has been modeled using the
AGEDIS Modeling Language AML – an
UML profile for testing
IF is an intermediate representation for AML

test generation
several tests have been extracted
successfully using TGV / AGEDIS
test directives combines functional goals
(e.g, connection establishment, publishing,
notifications) and coverage criteria (e.g, return
values for methods)

test execution
generated tests have been applied on
concrete implementations using SPIDER,
the AGEDIS Test Execution Engine

(injected) errors have been discovered

Client

notify

IF Tutorial
10

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

manufacturingmanufacturing
Job-shop Scheduling

Axxom Lacquer Production
case study proposed in AMETIST IST-2001-35304

IF Tutorial
11

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

axxomaxxom lacquer productionlacquer production
chemical industry problem

there are 29 lacquers to be produced, each one
in some predefined time interval [earliest-start
date, due date]

lacquers are of 3 different types, each type has a
specific production flow, characterized by the
resources involved, processing times, flow
constraints, etc.

Problem: find an optimal schedule i.e., with
minimal delays for the production of 29 lacquers

IF-based solution
reduce the scheduling problem to a minimal path
cost extraction problem:

model each lacquer as an IF process encoding
resource allocation/deallocation order, basic task
duration, additional flow constraints

model the production plan as the parallel
composition of lacquers automata + resources

The optimal schedule correspond to the minimal
cost path leading from the initial state to a state
where all lacquers have completed successfully

hdl(75h58)tp2(61h55)

dk(12h59) lab(14h33) dk(8h40) lab(67h08) abf(35h11)

mix (?)

4h

6h 4h

lacquer type

IF Tutorial
12

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

axxomaxxom lacquer productionlacquer production
finding an optimal path

the search space is huge because of
the interleaving of 29 processes using
more than 73 clocks !

several heuristics have been applied
at source level to reduce the search:

avoid lazy runs i.e, remove useless waiting
from schedules
avoid phase overtaking between jobs
(lacquers) of the same type i.e, ensure a
pipelined execution
enforce minimal separation time between
jobs of the same type

It take 15’’ to find that an optimal 0-
delay schedule exists on the model an
to extract it using the IF optimizer

IF outperform standard MILP (Mixed
Integer Linear) approaches on the same
case study

but still not all the difficulties of the real
case study have been considered e.g,

batch splitting, operating hours, sequence
depending costs, performance factors

IF Tutorial
13

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

asynchronous circuitsasynchronous circuits
timing analysis

O. Maler et al. On timing analysis of combinational circuits. In
Proceedings of the 1st workshop on formal modeling and analysis
of timed systems, FORMATS’03, Marseille, France.

functional validation
D. Borrione et al. Validation of asynchronous circuit verification
using IF/CADP. In Proceedings of IFIP Intl. Conference on VLSI,
Darmstadt, Germany.

IF Tutorial
14

SPIN workshop
April 2, 2004

protocols – embedded – distributed – manufacturing - circuits

timing analysistiming analysis
F

[l,u]

x1
x2

xn

y

stable excited

[y≠F(…)]ε / C:=0

[y=F(…)]ε

[y≠F(…) ∧ l ≤ C ≤ u]δ / y:=¬y

asynchronous circuit problem
knowing individual gate latencies, find the
maximal stabilization time of the circuit,
for an arbitrary change of inputs

IF-based solution
model each gate as a timed automaton
and the circuit as the product of gates

the maximal stabilization time correspond
to the maximal delay path leading from
the initial state to some next stable state

this method is exact, and therefore more
accurate than usual methods which
ignore the data part (no false paths !)

nevertheless, we are limited by the size
of the circuit (number of gates)

	IF Tutorial
	model based development
	approach: build on the existing
	approach: build on the existing
	approach: build on the existing
	challenge
	overview
	perspectives
	language.pdf
	The IF Language
	IF Specification
	execution model
	system structure
	example
	process
	state
	transition
	types and data
	signal exchange
	signal routes
	delivering policies
	example: ABP
	transmitter
	receiver
	dynamic creation
	example
	nested states
	ADT
	external code
	The IF Language
	time in system execution
	specifying timed behavior
	linking time and system progress
	semantics of urgency
	resources
	dynamic priorities

	tools.pdf
	IF Toolset
	IF Toolset
	language API
	AST overview
	an example: used variables
	applications
	exploration API
	LTS representation
	LTS traversal
	an example: bfs search
	applications
	simulator design
	architecture
	execution control
	execution control
	execution control
	simulation time
	state representation
	credits
	IF Toolset
	using observers
	observation and actions
	?-calculus evaluation
	behavioral relations
	example
	the TGV test generation tool
	principle of TGV
	test case generation in TGV
	TGV results
	optimization
	static analysis
	live variables
	dead-code elimination
	variable elimination
	IF Toolset
	SDL overview
	SDL concepts
	SDL translation
	sdl2if
	an overview of UML
	language choices
	translation to IF
	tool architecture
	simulation / verification interface

	cases.pdf
	Case Studies
	protocols
	pragmatic general multicast
	pragmatic general multicast
	embedded software
	ariane 5 flight program
	ariane 5 flight program
	distributed applications
	mq series integration broker
	manufacturing
	axxom lacquer production
	axxom lacquer production
	asynchronous circuits
	timing analysis

